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Synthése du rapport en francais

Ce stage porte sur la résolution numérique des lois de conservation et des systemes hyperboliques. Plus précisément,
I’objectif est de démontrer la stabilité et la convergence d’un schéma qui préserve la propriété du domaine invariant,
proposé par Jean-Luc Guermond et ses collegues entre 2014 et 2016. La discrétisation temporelle du schéma est
basée sur la méthode d’Euler explicite et la discrétisation spatiale utilise des éléments finis H'-conformes. Il peut étre
démontré de maniere informelle que le schéma est précis au premier ordre en temps et en espace, et qu’il préserve chaque
ensemble invariant associé a une loi de conservation ou a un systeme hyperbolique. L’ensemble du stage est grosso
modo divisé en deux parties. Durant la premiere moitié du stage (environ deux mois), mon travail principal consistait
a implémenter numériquement ce schéma. La seconde moitié du stage fut principalement consacrée a explorer les
propriétés du schéma au point théorique.

Les propriétés mathématiques des lois de conservation et des systemes hyperboliques sont étudiées depuis longtemps.
L’existence de chocs et de discontinuités pour les lois de conservation et les systémes hyperboliques est un énorme défi
pour les études théoriques et numériques. Les chercheurs utilisent la notion de solution faible pour traiter le probleme
de la discontinuité et utilisent 1’inégalité d’entropie pour résoudre le probléme de 1’unicité a un certain niveau. Pour
le cas scalaire, toute fonction convexe peut jouer le rdle de 1’entropie, et la condition d’entropie résout le probleme
d’unicité. Mais pour les systémes, la condition d’entropie ne garantit pas toujours ’unicité de la solution.

Dans la partie théorique, nous avons analysé la convergence du schéma. Pour le cas scalaire, nous avons d’abord
établi une borne uniforme supérieure sur le terme de dissipation 1i€ a la viscosité du graphe sous certaines hypotheses
raisonnables. Ensuite, nous avons utilisé ce résultat pour prouver que la limite de notre solution numérique (si elle
existe) est une solution faible et satisfait les inégalités d’entropie, a nouveau, sous certaines hypotheses raisonnables.
Apres, les systémes hyperboliques sont également analysés avec un raisonnement similaire. Une différence importante
est que, dans le cas scalaire, la propriété de préservation du domaine invariant est une propriété locale, et cette localité
joue un role essentiel pour établir la stabilité du schéma. Mais dans le cas des systémes, bien que nous pouvons observer
cette localité dans des expériences numériques, le résultat théorique n’est pas encore clair. A cause de cela, dans notre
analyse numérique, nous avons ajouté 1I’hypothese de localité. D’autre part, I’hypothese de localité peut étre enlevée si
nous introduisons une borne inférieure uniforme pour la borne supérieure de la vitesse maximale des ondes, et cela est
discuté dans le rapport. Une difficulté pour 1’analyse de convergence est la non-linéarité du flux. Puisque la solution
numérique est uniformément bornée, il est possible de trouver une sous-suite convergente au sens faible*. Mais, a cause
de la non-linéarité du flux, on ne peut rien dire sur la convergence du flux, et c’est la raison pour laquelle il faut ajouter
une hypothese sur la convergence de la solution numérique. Une possibilité d’enlever cette hypothese est d’introduire
les solutions a valeur de mesure, mais cela reste a explorer.

Dans la partie numérique, j’ai réalisé un code sur Python en suivant la structure du code en Matlab de Zhaonan
Dong. Ce code contient cinq parties: lecture et traitement du maillage, intégration numérique, calcul matriciel, im-
plémentation du schéma et estimation des erreurs. La premicre partie consiste a lire le maillage a partir du fichier
Matlab écrit par Zhaonan Dong et a calculer les informations géométriques liées au schéma. La partie d’intégration
numérique est consacrée au calcul des opérateurs différentiels et des intégrations numériques pour des bases Lagrange
et Bernstein. La partie de calcul matriciel se concentre sur le calcul des matrices utilisées dans le schéma en utilisant la
parallélisation de multi-thread. Pour I’implémentation du schéma, j’ai fourni deux facons de calculer 1’évolution tem-
porelle : (i) en utilisant la multiplication matrices-vecteurs et matrices-matrices, (ii) en utilisant le stencil de chaque
degré de liberté et I’expression algébrique du schéma. La condition aux limites peut étre imposée au sens fort, au sens
faible ou en résolvant un probléme de Riemann. Enfin, la partie d’estimation des erreurs est réalisée en utilisant une
intégration numérique d’ordre élevé.
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Abstract

This report is devoted to the study of an invariant-domain-preserving scheme to approximate the solution to conser-
vation laws and hyperbolic systems under the simplifying assumption that the solution is compactly supported. This
scheme consists of an explicit Euler time-stepping and continuous finite elements in space under a CFL stability con-
dition. Our main result is to prove under some suitable assumptions that, if a subsequence of the numerical solutions
converges in L' to a certain function in L*, then this function is a weak solution and an entropy solution. Finally, we
present numerical solutions illustrating the scheme on conservation laws and hyperbolic systems.

1 Introduction

1.1 Conservation laws and hyperbolic systems

The mathematical properties of conservation laws and hyperbolic systems are studied in Chapter 1 in [2], [3]], pages 1-
104 in [[L1], Chapter 5 in [[17], and Chapter 6 in [[19]. The existence of shocks and discontinuities for conservation laws
and hyperbolic systems is a huge challenge for theoretical and numerical studies. Indeed, even if the initial condition
is smooth, it is possible to observe a shock during the time evolution. Therefore, one should interpret the solution in
a weak sense instead of a strong sense. These weak solutions are merely bounded locally in space and in time. But
the notion of weak solution is not sufficient to ensure the uniqueness of the solution. In many cases, one can construct
more than one weak solution with the same initial condition. A reasonable weak solution should be a solution which
correctly represents the physical properties. This is usually done by requiring the satisfaction of an entropy condition,
whenever there are entropies associated with the conservation law or the hyperbolic system. For the scalar case, any
convex function can play the role of the entropy, and the entropy condition resolves the problem of uniqueness. But for
systems, the entropy condition cannot guarantee the uniqueness of the solution (see [4]). This well-posedness problem
can be resolved to some level by introducing the so-called entropy measure-valued (EMV) solution as a probability
measure, see [8].

1.2 Existing numerical methods in literature

From the numerical point of view, one wants to fit the properties observed at the PDE level, for instance, the invariant-
domain-preserving properties (e.g. the positivity of mass density for Euler equations), and the entropy inequality.
Moreover, if possible, one hopes to establish convergence for the scheme, for instance to ensure that the limit of a
(sub)sequence of numerical solutions coincides with a suitable weak solution.

A huge body of literature is devoted to the numerical approximations of conservation laws and hyperbolic systems.
For instance, [5 6] studies the convergence to the entropy weak solution for scalar problems with finite volume method,
and continuous/discontinuous Galerkin method are investigated in [14} [18]].

1.3 An invariant-domain-preserving scheme

In this report, we focus on a scheme designed by Guermond and Nazarov [12] and Guermond and Popov [15]. It can
be informally shown to be first-order accurate in time and in space and to preserve every invariant set of a conservation
law or a hyperbolic system. The time discretization is based on the forward Euler method and the space discretization
employs H !-conforming finite elements. A overview can be found in Chapters 81, 82 and 83 in [10].

1.4 Outline

Our main result is to prove under some suitable assumptions that, if a subsequence of the numerical solutions converges
in L! to a certain function in L*, then this function is a weak solution. This report is organized as follows: In Section
we introduce the model problem, and the basic properties of conservation laws and hyperbolic systems. In Section
[3l we introduce the discrete setting and investigate the convergence of the scheme for conservation laws under some
reasonable assumptions. In Sectiond] we prove the convergence for hyperbolic systems, but with more assumptions.
Section[5]is devoted to two further analyses: (i) proving that a subsequence of the numerical solutions converges to an
entropy solution; (ii) removing some assumptions, by slightly modifying the scheme (increasing the graph viscosity).
Finally, numerical experiments are presented in Section [6]



2 Model problem

In this section, we introduce the models investigated. A more detailed discussion of these models can be found in
Chapter 79 and 80 of [10].

2.1 General setting

Let Q be an open bounded polyhedral subset of R¢,d > 1. Let us denote by dQ its boundary, ng the unit normal
vector to 0Q outward to Q, T the given final time. We denote the time variable by ¢ and the spatial variable by x. The
subscript of differential operators with respect to x is omitted, e.g., we note div := div,. We also denote the Euclidean

norm for all £ € R" by ||&]|, := \V EZ:I 5/%'

2.2 Conservation laws
We introduce the model problem firstly.

Definition 2.1. (Model problem) We consider the following scalar conservation law:
Ju+divfw) =0, V(x,t) € Qx(0,T), (D

with the initial condition
u(x,0) = ug(x), Vx € Q.

Assumption 2.1. (Model assumptions) We assume the problem data are such that it is meaningful to consider the
following boundary condition:
u(x,t) =0, V(x,t) € 0Q % (0, T).

Moreover, we assume that there is an invariant domain /3 C R, which is an interval such that the invariant-domain-
preserving property is satisfied:
u(x,t) € B,

for all (x,7) € Q% (0,T). For conservation laws, B is a bounded interval and this property is called maximum principle.
Finally, we make the following hypotheses on the initial data and on the flux:

uy € LA(Q),
fewh=mB;RY.
Then we introduce the notions of weak and entropy solutions.

Definition 2.2. (Weak solution) We say thatu € L®(Qx (0, 7)) is a weak solution to (T)) if for all ¢ € CX(Qx[0,T)),

we have - -
/ /u5t¢+/ /f(u)-V(ﬂ+/uo(P(x,0)=0- 2
o Ja 0o Jo Q

Definition 2.3. (Entropy pair) For any convex function # € C!(8) with associated flux g € C!(53;R?) such that
0,q(v) =1’ (v)9, f (v) forall 1 <1 < d and all v € B, we say that (7, q) is an entropy pair for the conservation law (T)).

Definition 2.4. (Entropy solution) We say that u € L® (2 X (0, T)) is an entropy solution to (T)) if for any entropy pair
(1,9), and for all p € C*(Q x [0,T); R, ), we have

T T
- / / nw)o, o — / / qu)- Vo — / n(ug)e(x,0) < 0. 3)
0 Q 0 Q Q

The invariant-domain-preserving property is related to the Riemann problem and the Riemann average. Note that
the Riemann average is an important ingredient for the design of our scheme, so we introduce it here.
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Figure 1: Solution of Riemann problem for scalar case

Definition 2.5. (Riemann problem) The Riemann problem is defined as follows: Find the entropy solution u such that

up if x <0,
ugifx >0,

alu + ax(f(u) : n) = 0, u(x, 0) = { (4)

where u;,ug € R and n is an arbitrary unit vector in R9.

Definition 2.6. (Maximum wave speed) We refer to A; (u;,ug,n) and Ag(uy,ug, n) as the left and right extreme wave
speeds for the Riemann problem, respectively. The precise definition of the wave speed can be found in Section 79.2.4
of [10]. Any real number A,,,,(u; , ug, n) satisfying the inequality

AmaxWp,ug,n) > max(|Ay(uy,ug, n)|, |[Agur,ug,n)|)
is called upper bound on the maximum wave speed.
An important property of the maximum wave speed is the following:
Lemma 2.1. (Riemann average) Let (1, q) be an entropy pair, u be the entropy solution to @), and define the Riemann
average as u(t,uy,ug) 1= /%1 u(x,t)dx. Let A,,,, (ur,ug, n) be any upper bound on the maximum wave speed. Then,

2
1

2 pmax(up ug,n) >

forallt € [0,

u(t,up,ug) = %(uL +ug) —t(f(ug) — f(ur))-n € Conv(uy,ug),

n(a(t,ug,ug)) < %(”(”L) +n(ug)) —1(qug) — qur)) - n,

where Conuv(uy ,ug) denotes the set of all convex combinations of u; and ug.

An example of the Riemann problem is given in Figure[I] as well as an illustration of the maximum wave speeds and
their upper bound. As we can see from the figure, when ¢ is sufficiently small, the solution u is a convex combination
between u; and up.

2.3 Hyperbolic systems
Definition 2.7. (Models) We denote m the dimension of the system, and we consider the following hyperbolic system:

du+ divf(u) = 0, V(x,1) € QX (0, T), (5)



with the initial condition
u(x,0) = uy(x), Vx € Q.

Assumption 2.2. (Model assumptions) We assume the solution is compactly supported. Moreover, the invariant-
domain-preserving property is satisfied, i.e., u € B for all (x,7) € Q X (0,T). We emphasis that B3 is convex and can
be unbounded. Finally, we make the following hypotheses on the data and on the flux:

uy € L>(Q; R™),

f e wheB;R™?).

Then we introduce the notions of weak and entropy solutions.

Definition 2.8. (Weak solution) We say that u € L®(Q x (0, T); R™) is a weak solution to (3) if for all ¢ € CrQx

[0,T); R™), we have .
T
/ /ud,(p+/ /ﬁ(u) : V(p+/u0¢(x,0) =0. (6)
o Ja 0o Ja Q

Definition 2.9. (Entropy pair) We say that (77, q) is an entropy pair for (@) if the function # € C!(53; R) is convex and
if the function q € Cl(B;R?) is such that 0,9,(v) = Zlgﬁm 0n()o,f (v), forall1 <1 <m,all 1 <k <d,andall
v € B. In other words, D,q(v) = D,n(v)D,f(v), where D, is the differential operator with respect to u.

Definition 2.10. (Entropy solution) We say thatu € L®(Qx (0, T); R™) is an entropy solution to () if for any entropy
pair (77, ), and for all ¢ € C°(Q X [0,T); R,), we have

T T
- / / n(w)o,p — / / qu) - Vo - / n(uy)e(x,0) < 0. @)
0 Q 0 Q Q

Similarly to the scalar case, the Riemann problem plays an important role, and we give the definition and properties
here.

Definition 2.11. (Riemann problem) The Riemann problem is defined as follows: Find the entropy solution u such
that

u; if x <0,
ugif x>0,

ou+0.(Fw)-n)=0, ux,0) := { (8)

where u; ,up € Band n is an arbitrary unit vector in R.

Definition 2.12. (Maximum wave speed) We refer to A7 < /1?’ <A <L <4, < Al as the wave speeds for the
Riemann problem. The precise definition can be found in Section 80.2.1 of [10]. Any real number 4,,,, (u;,ug,n)
satisfying the inequality

)’max(uL7uR’ n) > max(l’%—L |/1;|)

is called upper bound on the maximum wave speed.
One important property of the maximum wave speed is the following:
Lemma 2.2. (Riemann average) Let (1, q) be an entropy pair, u be the entropy solution to @), and define the Riemann
1

average as u(t,uy ,ug) := [ 51 u(x,t)dx. Let A,,, (uy,ug,n) be any upper bound on the maximum wave speed. Then,
T2

forallt € [0 1

’ 2/1max(uLsuRsn) g
_ 1
ut,uy,ug) = E(uL +up)—t(f(ug)—tw;)) nekb,

n@(t,uy,ug)) < %(n(uL) +n(ug)) —1(qug) — q(uy)) - n.



3 Numerical analysis for conservation laws

In the first part of this section, we introduce the finite element space. The second part is devoted to describing the
scheme. In the third part, we prove that some properties satisfied for solution at the PDE level (e.g., invariant-domain-
preserving, entropy inequality) can also be satisfied for discrete solution in some sense. Moreover, we also prove that
the numerical solution converges to a weak solution at the PDE level.

3.1 Discrete setting

Definition 3.1. (Time discretization) We introduce the discrete time nodes ¢, for all n € N T, Where N r=10,..,N—
1},ty=0and ty = T. The time step 7, satisfies t,,; =1, + 7, and we set I, = [t,,1,. ).

Definition 3.2. (Mesh and FEM space) We consider a shape-regular sequence of matching meshes {7,},, h =
maxger, hg where hy denotes the diameter of cell K. For simplicity, we assume that the sequence {T,},, is quasi-

uniform. The reference element is denoted by K. We denote by ® K K — K the diffeomorphism mapping K to an
arbitrary element K € 7. We introduce the reference finite element (Ie , ﬁ, ﬁ) and we define the scalar-valued finite
elements space

V, = {v e CO%Q:R) : v|gody € P, VK €T},

where P is the reference space. We also define the finite elements space with zero boundary condition:
0. 1
V, 1=Vyn Hj(Q).

Letting n,;, = dim P, the shape functions on the reference element are denoted by {8, }i<i<n,,- We assume that the basis

{@ } I<i<ny, has the partition of unity property:

Z 6,%)=1,Vzek. ©)

l§i§n5h

The global shape functions are denoted by {¢; },c 4,, Where A, is the set of degrees of freedom. We also denote the

interior degrees of freedom as A(}l ={i€ Ay . ¢;lyq = 0}. These functions form a basis of V},, and the partition of
unity property implies that 7, - A, ¢;(x) = 1 forall x € Q. The support of ¢, is denoted by w;, forall i € A;,. The set of
indices of shape functions whose support on E is of nonzero measure is denoted by I(E) := {j € Aj, : |o;,nE| # 0},
where | - | denotes the measure of a set. The set of indices of shape functions whose support on w; is of nonzero measure
is denoted by

106) :=1L(w) ={j €Ay lw;Na;| #0}.

This set defines the stencil for the finite element scheme.

The matrix with entries m; ;= fg ¢;(x)p j(x)dx, i,j € Ay is called the consistent mass matrix and is denoted by
M. The diagonal matrix with entries equal to m; := fg ¢;(x)dx is called the lumped mass matrix and is denoted by
ML The partition of unity property implies that Y je1@) Mij = m;. One key assumption used in the rest of the report
is that

m; >0, Vie A (10)

The assumptions (9) and (T0) hold for many Lagrange elements and for Bernstein-Bezier finite elements of any poly-
nomial degree, as mentioned in [[14]. For simplicity, we only consider P; Lagrange elements in this report.

In various bounds, we denote by C any generic constant (its value can change at each occurrence) that is independent
of h and N, but may depend on d, m, T, the Lipschitz constants of the flux and the entropy, and some constants related
to the approximation properties of Lagrange finite element.

Owing to the mesh assumptions, we have, for all v, = ), 4, Viti € Vi, the following norm equivalence:

2 2 2
C“Uhlle(Q) < ”Uh“l}% < C”Uh”Lz(Q)’

where ||Uh||122 =) m;(V;)2.
h iGAh



3.2 Scheme
Definition 3.3. (Scheme) We denote the spatial approximation of u in the interval I, as
up(x) := Z U/'p;(x),
iEAh

for all n € N7 The global approximation is defined as up (x, )| I, = u;'l(x). The scheme is defined as follows:

+1
m U > (f(U")c +dn U - U”)) —0 1)
i Jj/Ti ij\Ti j’) =
n JeLM\li}

foralli € A) and all n € Ny, where ¢;; 1= [, ¢;V¢p; € RY and
d;’. 1= max(4
j

(U,'n7 U;" ni)llejll, imax(U;z’ U,'n’ n;)lecill) € Ry,

max

with 4,,,, (U, U ;‘, n;;) any upper bound on the maximum wave speed in the Riemann problem with data (U, Uj’?) and

the normal vector n; ;= IICCijII . Moreover, the following CFL condition should be satisfied with a constant p € (0, 1]:
ijl2
< p min —4 (12)
T min —,
" pieA‘;Z 2d},

where df} 1= ) JeT(\ i) dl’; The initial data is approximated by the L>-projection onto VhO:

/ (u)) — up)p; =0,
Q

foralli € A(})l. And to be consistent with our assumption on the compactness of the support of u at the boundary, the
boundary coefficients are set to zero, i.e., Ul.” =0foralln e .AfT andi € Ay \ A(;l.

3.3 Basic properties

We introduce two basic properties here: local maximum principle and discrete entropy inequality. The first one is
important for establishing the stability of the scheme and for proving that the limit of numerical solution (up to a
subsequence) is a weak solution; the second one is important for proving that the limit of numerical solution (up to a
subsequence) is the entropy solution. This will be further discussed in Section [3}

Firstly, we can rewrite the scheme for all i € A(})l as follows:

1 B}
urtt= % oror, (13)
JELG)

> Ui i’

2z,d}; . N fs -
where 0;’1. 1= T,j forall j € T()\{i}, 0" :=1— zjew)\{i} 01."1., and U]} :=U/

cij
24"
ij

Th ._1 n n n n

1

An important property is that Ul.'f = [% u’(x,1")dx, where u”. is the exact solution for Riemann problem with the
J 1y 1 ij

2
_ el
- 2d7,
that ¢ is sufficiently small so that U" € Conv(U",U"). Moreover, the CFL condition (T2) gives 0" € [0, 1] for all
i Ifl') 1y i J ij
j€E .

The following lemmas are proved in [[12,[15]. See also Theorem 81.8, Corollary 81.9 and Theorem 81.12 in [10].

initial data (Ul.” U ;’), the normal vector n; ;, and the artificial time t;‘j : . Owing to the definition of d Z we infer

ij>

10



Lemma 3.1. (Maximum principle) Under CFL condition (12), we have the local maximum principle and global max-
imum principle, i.e.,

Ul e Convjer)(UD),  uj(x) € Convjez(i)(Uj(-)),
foralli € Ay and all n € Ny, where Conv;c1;,(UY) denotes the set of all convex combinations for {U!'} je1;)-

Lemma 3.2. (Discrete entropy inequality) Assume the CFL condition (12)) is satisfied. Let (n, q) be an entropy pair
for (I). Then, the following discrete entropy inequality holds true for all i € A?l and alln € Np:

m; .
=) - nU + / div(T (g + Y, dlin(UM = nU”) <0, (14)
Tn o JELG)
where Ih(q(uZ)) =) q(U")¢; is the Lagrange interpolation of q(u},).
iEAh

3.4 Convergence analysis

In this section, we present the convergence result derived during this internship.

Lemma 3.3. (control on flux) For any function v, = Y, Vg, € V}? and any function g € W= (B; R?), we have

the following bound:

€Ay,

llg(p) = Tp(gpl 2(qy) + Alldiv(g(vy) — T8 12(0) < gllw 103 CrCaCinu VULl L2(02)s (15)

where Cy is the constant from the approximation theorems for Lagrange interpolation, C;,, is the constant from the
discrete inverse inequality and C, is the constant for inequality |low|lj2q) < Cyllvll peoqllwll 2 for all v €
L®(Q; R™4Y and w € L*(Q; RY).

Proof. We first prove g(v;,) € W 1°(Q) by considering the lemma 1.23 in [7]]: if glvy) € W1'°°(Th) and the jump of
g(vy) is zero, then g(vy,) € [Z&(9))

Preciously, on each cell K € T;,, we have v,|x € C®(K) and f € W*(B), so g(v,)|x € WIH®(K). This
implies g(vy) € W1’°°(Th). Since W1°(B) & €%(B) and v, € CY, we infer that glvy) € C%Q). So, on any face of
K, the jump is zero. combining these two results proves g(v,) € WH®(Q).

We then apply the approximation result from [1] to prove the bound for ||g(v,) — Z,(g(vp)l 2(q): For any p > d,
we have WP < €9 and we have W!? < L4 forall g < co. So, on each cell K,we apply the theorem 2.9 in this article
with p > d,q =2 to get

di-1
llg(wp) = Tp(gWpDllr2(k) < Crh G P)hIIVg(vh)IILp(K)

d(3-1)
< CIth 2p l’l||g||W1,oo(,3)||VUh||Lp(K)
S CICdCinvh’”gH W]'°°(B) ”VUh ||L2(K)’
where we used the discrete inverse inequality(e.g. lemma 1.50 in[7]]) for the last inequality. Then, we get the expected

bound by summing over all cells K € 7,.

For h||div(g(vy,) — I,(g(0p))|l L2(q)> We use the stability property of Lagrange interpolation mentioned in theorem
11.13 of [9] to derive the bound: On each cell K, we use the Holder inequality to get

. a@d-Ly
ldiv(g(vy) — I8l L2(ky) S A G |ldiv(g(oy) - Ly, (g Loky)
(-1
SCrh 2 ||Vl Lok

(-1
SCrCih 2 ligllwreo sy VORI Lok
< CrCiCinligllwro s IV ORIl L2(k)-

Then, summing over K € 7, concludes the proof. O
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Lemma 3.4. (Estimate on temporal accumulation) Under the CFL condition (12), we have the following estimate for
alln € Ny:

n+l _

o}, u;’l”[zi < 2pt,bj (U, uy), (16)

where b, (v, wp) 1= D dr.(V, = V)(W; = W)), for all v,, w), € V}?.

i€Ap,j<i “ij
Proof. With the help of (I3) and the CFL condition (I2)), we obtain

2 472 2 ) 2
1 2 _ 7 _ n 7 7
m(U™ = U™ _m,.( zl‘z)e;'j(ui"j-Uf)) = ( zl‘z)d;;(U;;—Uin)> Spr,,—d({< Zl‘z)d;’j(U;;—Ui")> :
JEL(i JEL( i jel(

Then, the Cauchy-Schwarz inequality implies that

m (U — UM < 2p7, Y d(T - UM,
JEL(i)

Now, we take the sum over all i € A, , notice that Ui’; =U j”l and dl."j = dj’.’[, so that
n+1 n\2 nryn ny2
Y mUMtt —Un? <2p7, Y, dNO!-UP)
€A, i€eAy,jeL(i)

= 2p1, Z d;’j ((Ui’; - U,-")Z + (17,.’;. - an)2>.

IEA,j<i

Then, we introduce the quadratic function ®(x, a, b) : = (x — a)® + (x — b)> which takes values in [%(b —a)2,(b— a)2]
for all x € Conuv(a, b). Thus, by considering this function and noticing that (_Ji'; € ConU(Ui”, U;’), we have

Z m, (U —UM? < 2pr, 2 d;; ((Ui’} — UM+ (Ui'} - U;t)2>

ieAy, €A j<i
=2pr, Z d; U/, U, Uy
€A, j<i
2
<2pz, ), dLU!-U.
€A, j<i
This proves (16). O
. . . 2
Assumption 3.1. (BV-like estimate) We assume that ), . Ny TnhlquZ ||L2( a <C.

Lemma 3.5. (Bound on dissipation) Assume the CFL condition (12)) holds true with p < 1 and Assumption[3.1] holds.
Then we have the following stability property:

llep 1%, +2(1 = p) PIRNACRTARS lugll, +C. (17)
h neENy h

Proof. We multiply the scheme by 27,U/" and sum over all i € Aj, and n € N7, and use the CFL condition (T2)
to obtain the expected bound. More precisely, we start by multiplying (I by 27, U/", and notice that 2ab — 2% =
a*> — b*> — (a — b)%. This gives

m, (U + 21, / divZ,(f W)U + 21, Z (U -UNU} = m(U"? + m (U — UM
Q . R
JEL®)

Then, we sum over all i € A, and n € N to get

I +2 3, =, /Q TG +2 3 5 B Ay = U =GN+ X T -G (8)

nENy nENy €A, j<i " heNy

12



We first estimate fQ divI,(f (“Z))”Z' We remove and add some terms to get
VI (f iy, = div( Ty @) = £ )+ div Gy

Noticing that u} [5o = 0, introducing q(u) = /0" f(s)ds and using the Stokes formula, we get

/divf(uZ)u;'l = —/ SW)Vuy, = - / divq(up) = —/ qup)ng = / q(0)ng = 0.
Q Q Q 0Q 0Q

Moreover, integrating by parts and using the approximation properties of Lagrange interpolation, we infer that

| [ aiv(msagn - )| =| [ (Tacragy - sa)vag
Q Q
< ||Zh(f(u2)) - f(uZ)”LZ(Q)”VL‘Z”LZ(Q)
< CRIV Sl 2@ Vi 2

< ChIVIGIT, g

where C depends on the Lipschitz constant of f. So we get

> / divI,(f@puy| <C rnhlquZHiz(Q). (19)
nENp Q ne€NT
For the last term on the right-hand side of (I8)), we use (I6) to infer that
Z ! —MZ||,22 <2 2 T, b, ul). (20)
nENp h neENp

After obtaining the estimates (I9) and (20), we put them into (I8) and obtain

N2 2 02 2
12 +200=p) D\ 7 Y, iU =UD? < gl +C Y, whllViyI2,
h nENy  I€Ap.j<i h neNy

We conclude by using Assumption[3.1]
O

Assumption 3.2. (Convergence in L') We assume that the sequence of numerical solutions {up, .}, has a subsequence
(still denoted by {uy, ; },) which converges strongly to some function u € L*(Q2x(0,T)) in L' ie., that limy, g |luy . —
ull L1 @xo.1y) = 0-

Theorem 3.1. (Convergence of the scheme) Assume that the CFL condition (12)) holds with p < 1, and that Assumptions

-1 and 3.2 hold. Then, the limit u of the sequence of numerical solutions (up to a subsequence) is a weak solution of
(), i.e., for all p € CX(Q % [0,T)), we have

T T
/ /ud,qo+/ /f(u)-qu+/u0q)(x,O)=O.
0o Ja 0o Ja Q

Proof. We introduce the the Lagrange interpolant (pz =1, 1)) = EieAh @!¢;, with ¢! 1= @(x;,1,) where x;
denotes the ith interpolation node, and we introduce the notation ¢" := (-, t,). We multiply the scheme (II)) by @
and sum over all i € A, and all n € Ny to get

Tl,h + T2,h + T3,h = 0, (21)
where

Tl,h = Z Z mi(Uin+] _Uin)(p:;’

nENT IEA,

P2 /Q divL,(f W)@,

neNr
Tyyi= )1, D, dLU=UNGe! - b

neENy €Ay, j<i

!\)H
=
Il
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Similarly, we introduce two terms:

T
Tl,/’l ::_/ /uh,ratqo_/uo(p(x’o)s
0 Q Q
B T
Iy = —/ /f(uh,r) “Vo.
0 Q

h—0 ~

~ h—0 h—0
We will prove that Ty ,, — Ty ,—— 0, T, ;, = T, ,—— 0 and T3 ,—— 0. Then, passing to the limit in 1)) gives

~ ~ h—0
T, + T, ,—— 0. After that, we decompose the left-hand side of (2)) into two parts:

T
T 3=—/ /ud,qo—/uo(p(x,O),
0o Jo o
T
T2,03=—/ /f(u)'WD.
0o Jo

h—0

~ h—0 ~
Then, using Assumption we conclude by observing that T} ,—— T g and T, ,—— T, .

We start with T} , — T} , which can be considered as the error in time. The main idea is to bound the temporal

accumulation term miIUi”+1 — U/"| using (T6) and to use the regularity of the test function. In details, integrating by

par

So,

ts in 7' , in time gives
Tip= D, D W -un / bio" + / ) — up)e’.
neNT ieAh @; Q
Tip=Tip= D, D U™ -UM / b0} — @") — / () — up)g”.
; Q

neENT €A,

The L2-orthogonality of the initial condition ensures the second term tends to zero:

h—0
| / ) — )| = | / W) = 10" = L] < Cllagll 2y 19° = L@l 20y —ms .
Q Q

For the first term, we need the following relation which is valid owing to the mesh assumptions:

Clo;| <m; <|w;|, Vi€ A,

‘We invoke this relation to obtain

| > Y wrt-un / b, — ¢")

SC Z z |Uin+l_U[n|/ |¢,|hSC Z h Z milUin+1_U[n|'
@;

neNy i€ A, neNy i€ A neNy  i€Ay

Using the Cauchy-Schwarz inequality, Young’s inequality, m; > O for all i € A, and Y, a4, M= ||, we get

1/2
Z m U™ — U] < |Q|1/2< Z m(U Uin)z) < %hl/zlﬂl " %h—1/2 Z m(UT - U,

ieAh ieAh ieAh

Inserting this estimate into the above inequality, using (T6)) and }; Ny Tabl (. 1) < C, we infer that

<C Y nY mlurt-ur|

| > Y wr-up / ¢! — ")

neN i€EA, neNy €Ay
<cr'?1Q| Y h+ch'2 Y ||u;+1—u',;||l2 < Ch'/2,
neNy nENy h
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To estimate T, j, — T2,h which can be considered as the error in space, the idea is to use Assumption More
precisely,

T - T~2,h = z / / f@y) Vo' —=T1,(f(uy)) - Vo,
neNy J In JQ
= E / / (f(UZ) - Ih(f(l«lZ))) -Vo" + Ih(f(u;’l)) V(" - (p;,l)
neNy /a1 Q

The second term converges to zero owing to the stability of Lagrange interpolation and f (4, ;) € whe < 9. For
the first term, we use the approximation properties of Lagrange interpolation to obtain

| [ (e -nais)-vor

< I1F@p) = L(F U 2@ 1Ve" Il 2@ < CCIIVURIT, o) 2R,

Summing over n € Ny gives

Z ,/I | /Q (f(u;’l) - Ih(f(u;'l))) - Vo"

<C Y gV, )"0

LX(Q)
nENT neNy
1/2 12
<hP(F 5) (X whlVegit,,) < cr
nENT neNr

For the viscosities dissipation term T3 ,, the Cauchy-Schwarz inequality implies that:

LRSI YN AR

neENy
< D nbhh a2 o)
neNT
1/2 1/2
<( X abphiieney) (Y w)
HENT HENT

To estimate b7 (¢}, ¢}}), we use the mesh assumptions that imply |A,| = O(h~9) and dy; < Ch?~!. The regularity of

¢ implies (¢! — go;’)2 < Ch?. So, we have b (¢}, @) = ¥ d’' (¢ — go;’)z < Ch™¢ . (h“"'h?) < Ch, which gives
IEA,j<i

T3] < Chl/2.

~ ~ h—0
Collecting all the estimates gives Ty , + T, ,— 0.

Since {uy, ; }, converges to u in L' owing to Assumption and f is Lipschitz continuous, we have

T

h—0
| / /(uh,f - “)at(P| < Cllup, — ull pr@xo,ry—— 0.
0o Jo

h—0

T
| /0 /Q (fup) - fw) - V(P’ S ClIf(up) = FW L @xo,ry) < Cllup: —ull proxory— 0-

- ~ h—0
Then, invoking T' ;, + T, ,—— 0, we complete the proof.

4 Numerical analysis for hyperbolic systems
This section is the generalization of Section [3] where the scheme for hyperbolic systems is presented and analyzed.

We follow the notation introduced in Section [3| when there is no ambiguity. Since the proof is similar to the one from
Section 3] we do not give detailed proofs for most results.
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4.1 Scheme

Definition 4.1. (Scheme) We denote the spatial approximation of u in the interval I, as

wi(x) i= Y Ulgy(x),

[E.Ah
for all n € N7. The global approximation is defined as u, ,(x, )| 1, ‘= u,(x). The scheme is defined as follows:

Un+1 Un
n n n n —
-+ z%:\ (ff(Uj)c,.j + (U - Uj)) =0, 22)
JEL(i

foralli € A(})l and all n € Ny.. Moreover, the following CFL condition should be satisfied with a constant p € (0, 1]:

< pmm

23
tGA 2d” ( )

As before, the initial data is approximated by the L?-projection onto Vho. And boundary coefficients are set to zero.

4.2 Basic properties

Firstly, we can rewrite the scheme for all i € .A2 as follows:

Ul = Z 7.0 (24)

JEL()

h " __2r,,dfj f 11 (i il =1 " df]" ="
where ©7; := —= forall j € O\{i}, O 1= 1= % crun(i) ipand Uy 1= U7,

U” = —(U +U )—(f(U ) — (U] ))2d”'

1
An important property is that U". = f 2 u”.(x,1".)dx, where u”. is the exact solution for Riemann problem with the
ij _1 ij ij ij

;j» and the artificial time o= I ”n”2. Owing to the choice of d”, t". is
ij 247" ij’ tij

sufficiently small so that Ui’} € BB. Moreover, the CFL condition 23)) gives @7]. € [0, 1] for all j € I(i).

initial data (U7, U”) the normal vector n;

Lemma 4.1. (Invariant-domain-preserving) Under CFL condition 23), we have uy, , € B.

Lemma 4.2. (Discrete entropy inequality) Assume the CFL condition @23)) is satisfied. Let (n, q) be an entropy pair
Jor Q). Then, the following discrete entropy inequality holds true for all i € A?l and alln € Np:

m; n+1 n n n n
— (U, )—n(U,-)+/d1V(Ih(q(u,,)))¢ + Z d;(nU}) —nU7) <0. (25)
" JEL()

4.3 Convergence analysis

Hyperbolic systems are slightly different from conservation laws, and these differences cause the problem for our
analysis. Thus we need to add a few assumptions. Since the square entropy n(u) = Euz is not always relevant for
hyperbolic systems, we need to add some hypotheses on the entropy for establishing the bound on dissipation:

Assumption 4.1. (Convexity of the entropy) The entropy satisfies the following properties:
n € CA(B;R),
at? <ETDInE <2, VEER™, (26)

where « > 0, and Dgn is the Hessian matrix of # with respect to u. Note that the second bound in (26) is just a
normalization of the entropy

16



Lm0
Sor+up

Figure 2: Illustration of Assumption

Moreover, since the locality of the invariant-domain-preserving property (local maximum principal in scalar case)
cannot be guaranteed, we need one more assumption which guarantees quasi-locality:

Assumption 4.2. (Local invairiant-domain-preserving property) We assume there exists a constant §; > 0 such that
_ ur+u”
U:.qj € B(—, %50”U? —Ulllp) foralli,j € Ay andalln € N7, where B(x, r) denotes the ball in R™ with center

X and radius . An example is given in Figure Q

Remark 4.1. (Bound of §)) In the following analysis, we assume without loss of generality 5, > 1, since in scalar case,
we have 6 = 1.

Lemma 4.3. (Estimate on temporal accumulation) Under the CFL condition 23) and Assumption we have the
following estimate for all n € Np:

! — u;nf}% < (1+83)pr, b (u) ul), @7)
where b;’l(vh, wy) = ZieAh,j<i i”j(V,» - Vj)T(Wi — Wj), forallvy,, w), € (Vho)m.

Proof. We use (24) and the CFL condition (23) to infer that

2 41’2 2 2 2
1 2 _ 1 _ 1 T
m (U = U =m( Y O] -UN) = mf’( > di0y-U) Spfnﬁ( > dn@,-un) .
JEL() N (S 40)) i jeI)

The Cauchy-Schwarz inequality implies that

m U U <2p1, Y di(T] - U
JETG)

Now, we take the sum over all i € A, notice that f]:'j = U?i and d Z”j =d /nt This gives

Y mUrt —un? <207, ) (@, - U’
€Ay, i€eAy,jeL(i)

=27, Y, I ((U;’j ~ UM+ (@ - U;?)2>.

IEA,j<i
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U'+U
) 2

_ _ 1+6 -
so that (U:.'j — Ulf')2 + (U:.'j - U;')Z < %(U}’f — U;’)Z as illustrated in Figure This implies that d>(U:.'j, Uy, U;.’) <

1+5S n ny2
T(Ui — Uj) . Hence, we get

Then, we denote ®(v, a, b) := (v—a)*+(v—b)>. Owing to Assumption we have (_J;'j € B( L, %50 I U;‘—U;.’ 1),

2 mUT U <+ 8)pr, Y, diUT - U

i€EA, €A, j<i
This completes the proof. O
Assumption 4.3. (BV-like estimate) We assume that ), Ny 7,h||Vuj ”il(g) <C.
Lemma 4.4. (Bound on dissipation) Assume that the CFL condition 23) holds true with p < li‘% and that Assumptions
B2 and[{3| hold true. Thus, we have the following stability property:
Y omn + (20— p(1+8D)) Y b up) < Y mnd +C, (28)

€A, nENy €A
where n?' = n(U}).

Proof. We denote nj := ZieAh n'e;, Dy, 1= ZieAh D,n!'¢;, with D,y := D,n(U7Y), and ;) 1= ZieAh f(UN ;.
We multiply the scheme (22)) by 27, D,#!', sum over all i € A and all n € N7, and use the CFL condition @23) to

. . . . . 1 _
obtain the expected bound. More precisely, we start by multiplying 22) by 2z, D, ", notice that (U*" — U")D, 5! =

1 "
=t = U - UNTHIUT - UT), where H' = [(/(1 = )D2n(U? + (U — U™). This gives

m,nf“ + ZTnLdiva - ¢; D,y + 27, Z d,; U/ - Uj’.q)Duni” <mn! + m,-(Ul.”Jrl - Ul.”)z,
JEL()

Since ||H]'[|, < 1 by 26) for all i € Aj, and all n € N7. Then, we sum over all i € A, and all n € N7 to get

> omn 2 ) rn/divﬁ;l‘-DunZ+2a Y o Y, dyUur-uty
Q

i€A, neNr nENyp €A, j<I
< muN+2 Y 1, / diviy - Dap+2 ) 7, Y, dy(Ul =UND! = D)
€Ay, neNy 78 nENy  i€Aj<i
0 n+1 ny2
< D mnd+ ) - upll (29)
ieAh VIENT h

We first estimate fg divf, D,n,. The entropy relation D,nD,f = D,q plays an important role. We add and remove
some terms to get

divﬁz . Dunz = div(f(u’;l) - 1f;:) . (DuWZ - Dun(uZ))
+div(F@?) — £7) - D) + dive@!) - (D! — D))
+divf(uy) - D,n(u})

Noticing that ul;llag = 0 and using the Stokes formula, we get

/divf(uZ)-Dm(uZ):/divq(u?l):/ q(u;'l)ngz/ q(O)nQ=/divq(0)=0.
Q Q oQ oQ Q

Moreover, integrating by parts and using the approximation properties of Lagrange interpolation, we infer that

| /Q div(F(u)) — ) - (D1} — D,n(u)))

< ChlIVURIIT, g

+| /Q div(F(@)) = 67) - D) + | /Q divf () - (D, — Dn(ul)
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Thus, we have

2 Z T, /divf;; Dyl <C Z Tnh||Vu;||2Lz(g). (30)
nGNT Q neNT
For the last term on the right-hand side of ([29), we use to infer that
> fupt! —upll%, < (1+8)p D T b, u). (31)
neNr h neNr

After obtaining the estimates (30) and (3T)), we put them into (29) and infer that

Qa-p1+8)) X 7, D Uy -U" < X omn? =Y mpN+C Y rnh||Vu;’1||iz(Q).

neNy  I€Ap.j<i i€EA i€EA neNy

We conclude using Assumption 4.3
O

Assumption 4.4. (Upper bound of maximum wave speed) We assume that 4,,,, (U7

from above by a constant for all i, j € A, and for all n € N. T-

, U;’, n;;) is uniformly bounded

Assumption 4.5. (Convergence in L") We assume that the sequence of numerical solutions {u,, , }, has a subsequence

(still denoted by {uy, . },) which converges strongly to a function u € L*(Q X (0,7);R™) in L', ie., that llwy . —
h—0
ull L1 @x(0.1)rRmy— 0.

Theorem 4.1. (Convergence of the scheme) Assume that the CFL condition 23)) holds with p < li‘; , and that Assump-
0

tions H.4 and[@.3| hold true. Then, the limit of the sequence of numerical solutions (up to a subsequence)
is a weak solution of (), i.e., for all p € CrQx[0,T);R™), we have

T T
/ /udr(p+/ /ff(u) : V(p+/u0(p(x,0):0.
o Ja 0o Ja Q

Proof. The proof is the same as in Section , the only difference is that, in Section we have d I’; < Ch4-! but for
hyperbolic systems, we do not know an a priori upper bound of maximum wave speed, so we need Assumptions #.4]to
ensure that d’;, < Clle;;ll, < Cchi-1, O

S Further analysis

Since the analysis for conservation laws is similar to the analysis for hyperbolic systems, we focus in this section on
hyperbolic systems.

5.1 Entropy inequality

In this subsection, we prove that the sequence of numerical solutions (up to a subsequence) converges to an entropy
solution, i.e., the entropy inequality (7)) is satisfied by the limit. The argument for proving this result is similar to the
proof of Theorem 3.1}

We use the scheme (22)) for this subsection.

Theorem 5.1. (Entropy inequality) Assume the CFL condition @23) holds with p < %, and Assumptions
0
D),

K4 and 3 hold. Then, the limit of our numerical solution (up to a subsequence) is the entropy solution of
i.e, forall p € Cé’o(Q x[0,T);R,), we have

T T
- / / n(u)o,p — / / qu)- Vo — / n(uy)ep(x,0) < 0.
0 Q 0 Q Q
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Proof. We follow the same arguments as in the proof of Theorem [3.1] with slight modifications. We multiply the
discrete entropy inequality (23] by @} > 0andsumoveralli € A, and alln € N to get

E\p+Ey,+E;,<0, (32)

where

Eyp = Z Z m(n ™ = el

neNy i€EA,

Eyp = Z Tn/diVIh(‘I(uZ))(PZ,
nEJ\/T Q

Eypi= Dt D, din—n)@) - ).

neNT €Ay, j<i

T
Eyi=- / / ()0, — / n(ug)@(x, 0),
Eyy 1= / /Q(uh) Vo.

h—0 h— h—
We will prove that E, , — E, ,—— 0, E,, — E,, 20, 0 and E; 20, 0. Then, passing to the limit in (32)
gives lim,_ E , + E, ;, < 0. After that, we decompose the left-hand side of (7) into two parts:

T
Ey:=- / / n(w)o,p — / n(uy)e(x,0),
0 Q Q
T
E), 1=—/ /Q(u)'V<P~
o Ja
h—0

h—
Then, using Assumptlon | we conclude by proving El h——> E,;and E2 — Ej.
We start with E; , — E| . The strategy is slightly different from Theorem 3.1} We add and remove the Lagrange
interpolant nh of n(u h) in E 1,» and estimate the errors. In details, adding and removing nh in E 1. gives

T T
E,= _/ / (n(uy) —n))o,e —/ / 00,9 — / n(ug)p(x,0) 1= E7" + E{“ng"ge,
0o Ja 0o Ja Q ’ :

with obvious notation. The first term Eler;"’ converges to zero since

T 1/2 1/2
‘/0 /g(n(u;)—ng)at(p]sc 3 rnh||VuZ||Lz(Q)SCh1/2< 3 rnh||Vuh||L2(Q)> ( 3 rn) <chn'/2.

ENT neENy neENy

Similarly, we introduce two terms:

Lagrange

We integrate by parts in time for E and infer that

ElL’Zgrange — 2 2 (,11{1+1 _ ’,Iln)/ ¢i(pn + /Q (’7(”2) _’T(uo))(PO

nENy €A,

So,

Eyy— ELFEe= %0 N ot =) /w bi(@" — o) — /Q (n@) — n(uy)) "

nej\fT [GAh i
The approximation properties of L>-projection ensure the second term tends to zero:

0 0 0 0 h=0
| [ (1) = ntu)) o] < Clina) = nuoll 2@y < Clay = w120 —— 0.
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where the limit result is from a classical density argument. For the first term, using the Lipschitz continuity of # and
following the same reasoning as in the proof of Theorem [3.1] gives

| > Yo - / b(@f - <C D D Ut -ur / (@} — @™ < Ch'/2.

neENT I€EAy nENT i€EAy

To estimate E, ;, — E, j,, the idea is to use Assumption More precisely, we have

Eyn=Ean= 2, / / q(uy) - Vo' - 1,(q(u})) - Vo,
HGNT I” Q

=2 /, /Q(q(“?’z)—fh<q<u2>>) Vo' + T(ql) - V(g" — ).
nEj\fT n

Noticing}hat llg}) — T,(qi)ll 2y < ChlIVU) |l 12q), the same reasoning as in the proof of Theorem [3.1) gives
|Eyj — Ep | < ChZ,

For the viscosities dissipation term Ej j,, noticing that (n!' — ;1;’)2 <CWU; - U;’)z, the Cauchy-Schwarz inequality
gives:

|Esul <C| Y wbyry @)
nENT

<C Y wbhwnu)' e (g, o'
neENt

172 172
<c( Y wbhuub@hen) (X @)
nENy nENy
<ch'’?,

E)ince b, (@}, @) < Chasdiscussed in the proof of Theorem Collecting all the estimates gives lim;,_,, E L h+E2’ n <
Since {u} }), converges to u in L' owing to Assumption we have,

r h=0
| '/0 /Q (’1(“2) - n(u))d,q0| < C||“Z - u||L1(Qx(o,T))———’ 0,

r h=0
[ [ty = aw - Vo < Cllat) = all oy < €l = sl angory =0

Then, invoking lim,,_,, E " Ez,h < 0, we complete the proof.

5.2 Analysis without sonic points

2
L2y’
average, i.e., Assumptions [d.3|and[4.2] This can be realized by assuming that there are no sonic points, i.e., assuming
that the upper bound on the maximum wave speed is uniformly bounded from below.

In this subsection, we want to remove the assumptions on )., Ny T, h||Vug || and the assumption on the Riemann

Definition 5.1. (scheme) We use the notation from the previous section. The scheme should be modified slightly as

follows: "
w2 Y, Y (f(U")u +xd (U — U")) —0 33)
a— jCi T rdy Uy =) ) =0
n el i)

with « a sufficiently large constant precised in Lemma[5.6] Moreover, the following CFL condition should hold:

(34)
with a given constant p € (0, 1].
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Lemma 5.1. (Convex combination) We can rewrite the scheme as follows:

1 _ 1
urtt= % eru;, (35)
JEL()
2t kd!".
where G):?j 1= % forall j € T()\{i} and ©f, :=1— Zjel([)\m @l"j By the same argument as in the previous
section, all the coefficients are in [0, 1], and the Riemann average f]?j = %(U? + U;’) - (f(U;‘) — f(U:’)) U takes

2Kd$
values in the invariant set B.

Assumption 5.1. (Boundedness of maximum wave speed) We assume that 4,,,,(U?, U;?, n;;) is uniformly bounded
from below and above for all i, j € A, and all n € N. T, 1.e., there exists a constant C; such that

C L) € Ao (U], U, ) < C,L(D), (36)
where L(f) is the Lipschitz constant of f.

Lemma 5.2. (Boundedness of Riemann average) Under Assumption the Riemann average stays in a ball with

n

center i2 L and radius %”U:’ - U;‘||2f0r alli,j € Ay and alln € Ny.

Proof. Owing to Assumption we have d;’j > C;1L(f)||cij |l,. Hence,

¢

i llejllz
2kd”.
ij

2cC; LD e 1l

C
|(sws - s < S2IU7 =~ TSI,

LS I =5,

O

Lemma 5.3. (estimate on temporal accumulation) Under the CFL condition (34) and Assumption [5.1] we have the
following estimate for all n € Np:

C2

A
™ = uh I < G+ =2, 5w, (37)

Proof. The proof is the same as the proof in Section@ the only differences are that we replace 6 in by % and
that the definition of the CFL condition is changed.

Lemma 5.4. (Norm equivalence) Under Assumption there exists a constant C; > 0 such that

(COT LR oY) < IV, ) < CLLE @), (38)

forallv, € (V}?)m

Proof. The proof follows the idea of [14]. We take two functions v;, = ZieAh Vi, w, = ZieAh W, € (V,?)m,
and define the local bilinear form on each cell K:

1
bWy, wy) = Y, AV =V W -W)).
i,jeI(K)

Up to the change of variable &, | p = vj,| g 0@, the definition of by, Assumptionand lle;;ll, = O(h?=1) imply that

1 N N
(%b,((-, -)) 2 isanorm on P/R. Since all norms are equivalent on P/R, we infer that

N h N
CLOIVELIIT, 4, < oy oK@ o) < CLOIVOLII, ¢ -

After using the change of variable v), = &, 0@ and Ch? < m; < Ch? for all i € A, we infer that

CLOAIVY,II, ) < bx@n.vp) < CLOAIVY,II, )
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Since the pairs (i, j) € Aj, X A, are counted twice, when we sum over all cells, we get
1
Wy@pvp) = 5 Y b @y
K

This concludes the proof. O

Lemma 5.5. (BV-like estimate) Under Assumption we have hlquZ ”2LZ(Q) <C L(f)b;’l(uz, uZ).

Proof. This is the direct corollary of the previous lemma. O

Lemma 5.6. (Bound on dissipation) Under the CFL condition (34) with p < 2a and Assumptions[d.1|and[5.1] we have
C2
the following stability property by choosing k sufficiently large so that 2a — p)x — pT‘ —Cy>0andx > 1.

2

pC
Z miniN + <(2(x - pk — TA - C0> Z b, (U, u)) < Z mir/?, (39)

€A, neNr €Ay

where C, is a constant depending on the approximation properties of P, Lagrange finite element, L(T), C| and the final
time T.

Proof. The argument is the same as in Section [22] with the following modifications:
() Replacing 2a ¥ 7, Xicy, j<i dyy(UT = U by 2ka ¥ 7, Ve 4, j<; 4 (U] = U in @9).

neENt neNr
(i) Replacing Y, Tnh||VuZ||iz(g) by Cy X 7,b,u},u})in (30).
VIENT HENT
C2
(iii) Replacing 1 + 55 by k + ?‘ in (31).
Then, a similar reasoning proves the present lemma. O

After obtaining the above bound on dissipation, we can get the convergence result as in the previous section.

6 Numerical experiments

In this section, we numerically illustrate the first-order invariant-domain-preserving method on conservation laws and
hyperbolic systems. Since the scheme defined in the previous sections only considers zero boundary conditions, we
introduce here a scheme that accounts for nonzero the boundary conditions. We denote I';,, C 0€2 a part of the boundary
where the boundary condition is enforced at the PDE level. For conservation laws, it is typically the problem-dependent

inflow part, i.e., I';, :={x € 0Q : f(u(x,1)) - n < 0}. The set Al}:"" is defined as the set of degrees of freedom lying
onl;,, and A7 := Ah\A;f". Then we compute Ul.”Jrl by

Un+l —_yr

¥ (f(U")c..+d"(U"—U"))=o
z S+ at =0 :
n JEL@\L)

m;

foralli € 'AZ and all n € M. The boundary condition is strongly enforced on Ui"“. For hyperbolic systems, the
boundary condition may be enforced only on some components of Ul’.""l. The L'- and L?-relative errors are estimated
at the final time T for all the examples. In all the tests, the upper bound on the maximum wave speed is set to a constant
value for all pairs (U, U;’) € B x B for simplicity. Provided this upper bound is large enough, the invariant-domain-
preserving property is satisfied.
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6.1 Details about code

I implemented a Python program to realize the scheme by following Zhaonan Dong’s idea. The whole code is roughly
divided into five parts: mesh reading and treatment, numerical integration, matrix computation, schema implementa-
tion, and error estimate.

The data format follows the idea of Zhaonan Dong. The program can read a file in .mat format, and it can convert
the mesh information to Python’s data of type *Ndarray’, and store it in a class named *Geometry’. In addition to
reading data from .mat files, this class also provides functions for calculating useful geometric information in various
schemes.

For numerical integration, I wrote the bases of finite elements of the Lagrange type of order 1, 2 and 3 on a reference
element. The realization of numerical integration uses the tensor product of the point of Gauss and the point of Legendre
on the rectangular unit, then apply a linear transformation between the rectangle and the triangle for computing the
integration on the triangle element. For various differential operators, I have calculated the exact first and second
order differentials of each base. In addition to the Lagrange bases, the first to third order Bernstein bases were also
implemented by a linear transformation from Lagrange basis to Bernstein basis.

In the matrix calculation part, the matrices are calculated in parallel. This includes the stiffness matrix of the Poisson
problem, the mass matrix and the matrices ¢;; and d;’j used in the implementation of the scheme. In the calculation of
d!, in order to simplify the problem, I only consider the case where the upper bound of the maximum wave speed is a
constant. In all calculations, the numerical integral on each mesh is parallel, but the final assembling process is not in
parallel.

The implementation part of the scheme mainly contains the following parts: implementation of the initial condition,
calculation of the CFL condition, time evolution and boundary conditions. The calculation of the initial condition
uses the L2-projection, i.e., an approximation of the initial condition is obtained by inverting a mass matrix. The CFL
condition calculation is computed by using the information from inflow part. There are two ways to update coefficients:
one is by matrix-vector multiplication (scalar case) and matrix-matrix multiplication (system case), the advantage of
this method is that the ’scipy’ module optimizes these algebraic operators. Another method is to use the algebraic
expressions given by the scheme and the locality of stencil. As the update of each degree of freedom is only related
to its stencil, we only use the local information for the coefficient updates. The advantage of this method is that its
parallel implementation is much simpler than matrix multiplication. The imposition of boundary conditions depends
on the problem. In the scalar case, I implemented three different methods: imposing in the strong sense, in the weak
sense, and by solving the Riemann problem. The first method consists in imposing the boundary conditions directly
on the degree of freedom on the inflow part by using the nodal value (if the boundary data is sufficiently smooth). The
second method is achieved by adding a surface integral (on inflow part) on the left and right side of the scheme. The
last method is to determine the coefficients by solving a Riemann problem in which the left state is the updated value
calculated by the scheme, and the right state is the nodal value of the boundary data. In the numerical experiments,
their results are very similar, so in the report I only present the experiments by strongly imposing boundary condition.
In the system case, I only implemented the first method, because the boundary conditions of hyperbolic systems are
more complicated and depend on the problem.

The error estimate is realized by the numerical integration of an order higher than the polynomial order of the finite
elements, I implemented the estimate for L', L% and H!.

6.2 Convergence tests with smooth solutions

We illustrate the method by solving model problems with smooth solutions in 1D and 2D.

6.2.1 Linear transport in 1D

We consider the model problem
u, +u, =0,

in the domain Q := (-1, 1), with the initial condition u(x) = u,,(x, 0), the inflow boundary condition u(—1,¢) = t+1,
and the exact solution u,,(x,?) :=t — x. The upper bound on the maximum wave speed is set to 4,,,, := 1. The final
timeis T :=1.

We show in Tablethe relative errors in the L'- and the L>-norms. We observe from the table a super-convergence
phenomenon, although the time discretization is only first-order accurate.

max
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Table 1: Linear transport, 1D

L! L?

DoFs | error rate | error rate
21 2.50E-03 | - 9.12E-03 | -

41 6.25E-04 | 2.00 | 3.23E-03 | 1.50
81 1.56E-04 | 2.00 | 1.14E-03 | 1.50
161 3.91E-05 | 2.00 | 4.03E-04 | 1.50
321 9.77E-06 | 2.00 | 1.43E-04 | 1.50

Table 2: Linear transport, 2D

LT L?

DoFs | error rate | error rate
21 3.73E-01 | - 9.12E-01 | -
41 2.10E-01 | 0.98 | 3.23E-01 | 0.90
81 1.14E-01 | 0.96 | 1.14E-01 | 0.90
161 6.00E-02 | 0.97 | 4.03E-02 | 0.93
321 3.08E-02 | 0.98 | 1.43E-02 | 0.96

6.2.2 Linear transport in 2D

We consider the model problem
u, + div(pu) =0,

in the domain Q := (=1, 1), with g := (2, —1)" the fixed transport velocity. The initial condition is g (X) = U, (x,0),

the inflow boundary condition u(x, t) = u,,(x, t) are imposed at the inflow partI';, = {(x;,x,) €Q : x; =-lorx, =
1}, the exact solution is u,,(x,?) := exp (x; + x, — t). In the numerical experiment, the upper bound on the maximum
wave speed is set to A :=1.5. The final time is T := 0.75.

. -
We show in Tablerm the relative errors in the L!-norm and L2-norm.

6.2.3 Wave equation in 1D
We consider the model problem
u, +v, =0,
v, +u, =0,
in the domain Q := (-1, 1), with the initial condition (uo(x), Uo(x)) = (uex(x, 0), U,y (x, 0)), and the boundary condi-
tion u(x, t) = u,,(x, t) is enforced at the whole boundary. The exact solution is defined as u,, (x, ) := sin(x) sin(t), v,,(x,t) :=

cos(x) cos(?). The upper bound on the maximum wave speed is set to 4,,,, := 1. The final timeis T := 1.
We show in Table [3| the relative errors in the L!-norm and L2-norm for (u, v), i.e., we estimate errors defined by

[| (uhN U;lv) - (uex(', T), Uex(-,T)) ||Lp(g) forp=1,2.

6.2.4 Wave equation in 2D with small and large graph viscosity

u, —dive =0,
v, — 2Vu =0,

We consider the model problem
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Table 3: Wave equation, 1D

L! L?

DoFs error rate | error rate
21x2 3.14E-01 | - 1.39E-01 | -
41x2 1.36E-01 | 1.21 | 6.12E-02 | 1.18
81x2 6.60E-02 | 1.04 | 3.00E-02 | 1.03
161x2 | 3.16E-02 | 1.06 | 1.44E-02 | 1.06
321x2 | 1.57E-02 | 1.01 | 7.15E-03 | 1.01

Table 4: Wave equation, 2D

small viscosity LT L? large viscosity LT L?

DoFs error rate | error rate DoFs error rate | error rate
25%3 1.74E-00 | - 1.70E-00 | - 25%3 2.87E-00 | - 2.89E-00 | -
81x3 1.24E-00 | 0.58 | 1.21E-00 | 0.57 813 2.55E-00 | 0.20 | 2.56E-00 | 0.21
289x3 8.09E-01 | 0.65 | 7.98E-01 | 0.67 289x%3 2.08E-00 | 0.32 | 2.06E-00 | 0.34
1089x%3 4.83E-01 | 0.74 | 4.88E-01 | 0.78 1089x%3 1.53E-00 | 0.47 | 1.50E-00 | 0.48
4225%3 2.69E-01 | 0.80 | 2.85E-01 | 0.86 4225%3 9.95E-01 | 0.63 | 9.75E-01 | 0.63
16641x3 1.44E-01 | 0.82 | 1.61E-02 | 0.91 16641x3 5.91E-01 | 0.76 | 5.87E-02 | 0.74

in the domain Q := (=1, 1)%,¢ := \/_Lz the wave speed, The initial condition is (uo(x), vo(x)) = (uex(x, 0),v,,(x, 0)),

y/3
and the boundary condition u(x, ) = u,(x, t) is enforced at the whole boundary, and the exact solution is

U, (x,t) = sin(zwx;) sin(zwx,) sin(?), v, (x, 1) = (ﬁ cos(zxy) sin(xrx,) cos(t), g—; sin(zx) cos(xx,) cos(t)).

The upper bound on the maximum wave speed is setto 4,,,, := c (small viscosity) in the first experimentand 4,,,, :=1
(large viscosity) in the second experiment. The final time is T := 1.

We show in Table the relative errors in the L'-norm and L2-norm for (u, v). As observed from the Table, if we
add too much viscosity, the scheme still converges but the rate may be influenced.

6.2.5 Euler equations in 2D

We consider the following equations:
p; +divm =0,
m, +divio ® m)+ Vp =0,
E, +div(v(E + p)) =0,

in the domain Q := (=1, 1)%, with the initial data (po(x), my(x), Eg(xX)) = (pex(x,0), m(x,0), E,(x,0)), and the
boundary data (p(x, 1), m(x,1), E(x,1)) = (pex(x,1), My (x,1), E..(x,1)) enforced at the whole boundary, where the
exact solution (p,,, m,,, E,,) is a two-dimensional isentropic vortex from Section 5.6 in [13] with x(l) = xg = 0. More
precisely, the exact solution is constructed as follows: Let p, :=Ty, =1, uy 1= (Uy,Uy), Uy = Uy = 1, be the
free-stream values; then the exact solution is a passive convection of a vortex with mean velocity u_,:

Pex(x, 1) = (T + 6TV u, (x,1) = uy +6u, p(x.1) = p!

ex’
_ 2 — B2
1 ’X4%ﬁf,6nLn=—9—%3wquﬁ
2 8ym

ou(x,t) = 2£ exp(
T
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Table 5: Euler equations, 2D

p L! 172 E L! 12
DoFs error rate error rate DoFs error rate | error rate
25%x4 1.46E-02 | - 2.23E-01 | - 25%4 4.57E-01 | - 3.34E-01 | -
81x4 1.81E-02 | -0.36 | 3.02E-02 | -0.51 81x4 3.46E-01 | 047 | 2.27E-01 | 0.66
2894 1.76E-02 | 0.05 | 2.99E-02 | 0.01 289x4 2.66E-01 | 0.41 | 1.67E-01 | 0.48
1089%x4 | 1.52E-02 | 0.22 | 2.51E-02 | 0.27 1089%x4 | 1.89E-01 | 0.51 | 1.14E-01 | 0.57
4225%4 | 1.26E-02 | 0.27 1.96E-02 | 0.35 4225%4 | 1.29E-01 | 0.56 | 7.55E-02 | 0.61

Table 6: Shock for Burgers’ equation

LT L?

DoFs | error rate | error rate
21 9.37E-02 | - 1.91E-01 | -
41 4.70E-02 | 0.99 | 1.36E-01 | 0.50
81 2.30E-02 | 1.03 | 9.34E-02 | 0.54
161 1.15E-02 | 1.00 | 6.60E-02 | 0.50
321 5.88E-03 | 0.97 | 4.79E-02 | 0.46

with X 1= (x; — ugt, Xy — U 1), 1? 1= %12, 7 :=7/5,and § := 5. Moreover,
2
1/m p
My = PoxUexs Eex=§<pex +7—1>.
ex

The upper bound on the maximum wave speed is set to 4,,,, :=5 and the final time is T := 0.5.
We show in Table the relative errors in the L'-norm and L?-norm for p and E.

6.3 Convergence tests with non-smooth solutions

In this section, we present simulations for non-smooth solutions, including a shock for Burgers’ equation in 1D, a
curved shock for Burgers’ equation in 2D, and a curved shock for a nonconvex flux in 2D.

6.3.1 Shock for Burgers’ equation in 1D

In this example, we consider Burgers’ equation

u; + <%u2>x =0,

with the initial datau := 1 if x < Oand # := 0 if x > 0. In other words, we want to solve a Riemann problem for
Burgers’ equation. The exact solution is u,, = 1 if x < 0.5¢f and u = O otherwise. We estimate the errors at time
T := 1. In Table @ we observe that the rate of convergence is h!/?, as predicted in [14]. The upper bound on the
maximum wave speed is set to 1. We present solutions on a sequence of uniform meshes at the final time 7" = 1 in
Figure [3to illustrate how the mesh refinement improves the shock resolution.

6.3.2 Curved shock for Burgers’ equation in 2D

We still consider Burgers’ equation, but in 2D. This example is from [16]]. We consider the model problem

u, +divfu) =0,
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Figure 3: Shocks of Burgers’ equation
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Table 7: Burgers’ equation, 2D

LT 1L?
DoFs error rate | error rate
25 6.40E-01 | - 8.96E-01 | -
81 4.86E-01 | 0.47 | 6.90E-01 | 0.44

289 3.44E-01 | 0.55 | 5.03E-01 | 0.49
1089 | 2.28E-01 | 0.62 | 3.53E-01 | 0.53
4225 1.43E-01 | 0.68 | 2.57E-01 | 0.47
16641 | 8.65E-02 | 0.74 | 1.88E-01 | 0.45

(a) exact solution (b) numerical solution

Figure 4: Solutions to Burgers’ equation

in the domain Q := (=0.25, 1.75)?, with f(u) := %(uz, u?)T, and the initial condition uy(x) = u,,(x,0). The boundary
condition is imposed on the inflow part. The final time is T := 0.75. The exact solution is constructed as follows. We
take a = 0.75. We assume firstly x, < x;. Then, we set z; = x; — %, Zy =Xy — % and @ = z; — z,. There are three
cases depending on the value of a:

1+a) % if —at<z,<t,
. 11+ .
ifa<1- (2a’ Uy (x,1) 1=11, 1ft$zz<1—a+(1—a)%,

—a, otherwise;

11 Zif—at<z, <20 +a)n(l —a) - at,
if 1 — ( +a)<a§1’ Uy (x,1) 1= f 1 al—zz ( a)i( a)—a
—a, otherwise;
if 1 < a, then u,,(x,?) := —a. Finally, we set u,, ((x{,x,),1) = u,,((x,, x1),?) if x; < x,. The final time is T' = 0.75

and the upper bound on the maximum wave speed is set to be 1. The rate of convergence is reported in Table[7]
Moreover, in Figure[d we present the P;-interpolant of the exact solution and our numerical simulation with 8192
cells. We observe that the shape of the exact solution is well reproduced by the numerical solution.

6.3.3 KPP flux in 2D

T
This example is also from [16]. We consider here a nonconvex flux f(u) := < sin(u), cos(u)) . This is a challenging
test, because of the loss of the convexity of the flux. The final timeis 7" := 1, the domain is Q := (-2,2) X (-2.5, 1.5),
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Figure 5: Numerical simulation with KPP flux

and the initial data is

%, otherwise.

14n . 2
—, if|Ix||s £ 1,
") :z{ L I3

The boundary condition is imposed on the inflow part where f(u) - n < 0. We observe from Figure [5]and comparing
to the results reported in [16]] that the correct shape of the solution is captured.

7 Further work

7.1 In practice

o We will rewrite the mesh reading part by using a well-developed mesh package in Python instead of reading the
Matlab file.

e High order basis will be implemented.

e A general method for transforming Lagrange basis to Bernstein basis will be considered.
e We will find a way for imposing the boundary condition for Bernstein basis.

e Higher order scheme will be implemented.

e The scheme will be rewritten in parallel.

7.2 1In theory

e We will try to remove the assumption of BV-like bound [3.1 and f.3] without modifying the scheme.
e The general boundary condition will be considered.

e A more general assumption on entropy pairs will be investigated.
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