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Synthèse du rapport en français
Ce stage porte sur la résolution numérique des lois de conservation et des systèmes hyperboliques. Plus précisément,
l’objectif est de démontrer la stabilité et la convergence d’un schéma qui préserve la propriété du domaine invariant,
proposé par Jean-Luc Guermond et ses collègues entre 2014 et 2016. La discrétisation temporelle du schéma est
basée sur la méthode d’Euler explicite et la discrétisation spatiale utilise des éléments finis 𝐻1-conformes. Il peut être
démontré de manière informelle que le schéma est précis au premier ordre en temps et en espace, et qu’il préserve chaque
ensemble invariant associé à une loi de conservation ou à un système hyperbolique. L’ensemble du stage est grosso
modo divisé en deux parties. Durant la première moitié du stage (environ deux mois), mon travail principal consistait
à implémenter numériquement ce schéma. La seconde moitié du stage fut principalement consacrée à explorer les
propriétés du schéma au point théorique.

Les propriétés mathématiques des lois de conservation et des systèmes hyperboliques sont étudiées depuis longtemps.
L’existence de chocs et de discontinuités pour les lois de conservation et les systèmes hyperboliques est un énorme défi
pour les études théoriques et numériques. Les chercheurs utilisent la notion de solution faible pour traiter le problème
de la discontinuité et utilisent l’inégalité d’entropie pour résoudre le problème de l’unicité à un certain niveau. Pour
le cas scalaire, toute fonction convexe peut jouer le rôle de l’entropie, et la condition d’entropie résout le problème
d’unicité. Mais pour les systèmes, la condition d’entropie ne garantit pas toujours l’unicité de la solution.

Dans la partie théorique, nous avons analysé la convergence du schéma. Pour le cas scalaire, nous avons d’abord
établi une borne uniforme supérieure sur le terme de dissipation lié à la viscosité du graphe sous certaines hypothèses
raisonnables. Ensuite, nous avons utilisé ce résultat pour prouver que la limite de notre solution numérique (si elle
existe) est une solution faible et satisfait les inégalités d’entropie, à nouveau, sous certaines hypothèses raisonnables.
Après, les systèmes hyperboliques sont également analysés avec un raisonnement similaire. Une différence importante
est que, dans le cas scalaire, la propriété de préservation du domaine invariant est une propriété locale, et cette localité
joue un rôle essentiel pour établir la stabilité du schéma. Mais dans le cas des systèmes, bien que nous pouvons observer
cette localité dans des expériences numériques, le résultat théorique n’est pas encore clair. A cause de cela, dans notre
analyse numérique, nous avons ajouté l’hypothèse de localité. D’autre part, l’hypothèse de localité peut être enlevée si
nous introduisons une borne inférieure uniforme pour la borne supérieure de la vitesse maximale des ondes, et cela est
discuté dans le rapport. Une difficulté pour l’analyse de convergence est la non-linéarité du flux. Puisque la solution
numérique est uniformément bornée, il est possible de trouver une sous-suite convergente au sens faible*. Mais, à cause
de la non-linéarité du flux, on ne peut rien dire sur la convergence du flux, et c’est la raison pour laquelle il faut ajouter
une hypothèse sur la convergence de la solution numérique. Une possibilité d’enlever cette hypothèse est d’introduire
les solutions à valeur de mesure, mais cela reste à explorer.

Dans la partie numérique, j’ai réalisé un code sur Python en suivant la structure du code en Matlab de Zhaonan
Dong. Ce code contient cinq parties: lecture et traitement du maillage, intégration numérique, calcul matriciel, im-
plémentation du schéma et estimation des erreurs. La première partie consiste à lire le maillage à partir du fichier
Matlab écrit par Zhaonan Dong et à calculer les informations géométriques liées au schéma. La partie d’intégration
numérique est consacrée au calcul des opérateurs différentiels et des intégrations numériques pour des bases Lagrange
et Bernstein. La partie de calcul matriciel se concentre sur le calcul des matrices utilisées dans le schéma en utilisant la
parallélisation de multi-thread. Pour l’implémentation du schéma, j’ai fourni deux façons de calculer l’évolution tem-
porelle : (i) en utilisant la multiplication matrices-vecteurs et matrices-matrices, (ii) en utilisant le stencil de chaque
degré de liberté et l’expression algébrique du schéma. La condition aux limites peut être imposée au sens fort, au sens
faible ou en résolvant un problème de Riemann. Enfin, la partie d’estimation des erreurs est réalisée en utilisant une
intégration numérique d’ordre élevé.
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Abstract
This report is devoted to the study of an invariant-domain-preserving scheme to approximate the solution to conser-
vation laws and hyperbolic systems under the simplifying assumption that the solution is compactly supported. This
scheme consists of an explicit Euler time-stepping and continuous finite elements in space under a CFL stability con-
dition. Our main result is to prove under some suitable assumptions that, if a subsequence of the numerical solutions
converges in 𝐿1 to a certain function in 𝐿∞, then this function is a weak solution and an entropy solution. Finally, we
present numerical solutions illustrating the scheme on conservation laws and hyperbolic systems.

1 Introduction
1.1 Conservation laws and hyperbolic systems
The mathematical properties of conservation laws and hyperbolic systems are studied in Chapter 1 in [2], [3], pages 1-
104 in [11], Chapter 5 in [17], and Chapter 6 in [19]. The existence of shocks and discontinuities for conservation laws
and hyperbolic systems is a huge challenge for theoretical and numerical studies. Indeed, even if the initial condition
is smooth, it is possible to observe a shock during the time evolution. Therefore, one should interpret the solution in
a weak sense instead of a strong sense. These weak solutions are merely bounded locally in space and in time. But
the notion of weak solution is not sufficient to ensure the uniqueness of the solution. In many cases, one can construct
more than one weak solution with the same initial condition. A reasonable weak solution should be a solution which
correctly represents the physical properties. This is usually done by requiring the satisfaction of an entropy condition,
whenever there are entropies associated with the conservation law or the hyperbolic system. For the scalar case, any
convex function can play the role of the entropy, and the entropy condition resolves the problem of uniqueness. But for
systems, the entropy condition cannot guarantee the uniqueness of the solution (see [4]). This well-posedness problem
can be resolved to some level by introducing the so-called entropy measure-valued (EMV) solution as a probability
measure, see [8].

1.2 Existing numerical methods in literature
From the numerical point of view, one wants to fit the properties observed at the PDE level, for instance, the invariant-
domain-preserving properties (e.g. the positivity of mass density for Euler equations), and the entropy inequality.
Moreover, if possible, one hopes to establish convergence for the scheme, for instance to ensure that the limit of a
(sub)sequence of numerical solutions coincides with a suitable weak solution.

A huge body of literature is devoted to the numerical approximations of conservation laws and hyperbolic systems.
For instance, [5, 6] studies the convergence to the entropy weak solution for scalar problems with finite volume method,
and continuous/discontinuous Galerkin method are investigated in [14, 18].

1.3 An invariant-domain-preserving scheme
In this report, we focus on a scheme designed by Guermond and Nazarov [12] and Guermond and Popov [15]. It can
be informally shown to be first-order accurate in time and in space and to preserve every invariant set of a conservation
law or a hyperbolic system. The time discretization is based on the forward Euler method and the space discretization
employs 𝐻1-conforming finite elements. A overview can be found in Chapters 81, 82 and 83 in [10].

1.4 Outline
Our main result is to prove under some suitable assumptions that, if a subsequence of the numerical solutions converges
in 𝐿1 to a certain function in 𝐿∞, then this function is a weak solution. This report is organized as follows: In Section
2, we introduce the model problem, and the basic properties of conservation laws and hyperbolic systems. In Section
3, we introduce the discrete setting and investigate the convergence of the scheme for conservation laws under some
reasonable assumptions. In Section 4, we prove the convergence for hyperbolic systems, but with more assumptions.
Section 5 is devoted to two further analyses: (i) proving that a subsequence of the numerical solutions converges to an
entropy solution; (ii) removing some assumptions, by slightly modifying the scheme (increasing the graph viscosity).
Finally, numerical experiments are presented in Section 6.
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2 Model problem
In this section, we introduce the models investigated. A more detailed discussion of these models can be found in
Chapter 79 and 80 of [10].

2.1 General setting
Let Ω be an open bounded polyhedral subset of ℝ𝑑 , 𝑑 ≥ 1. Let us denote by 𝜕Ω its boundary, 𝑛Ω the unit normal
vector to 𝜕Ω outward to Ω, 𝑇 the given final time. We denote the time variable by 𝑡 and the spatial variable by 𝑥. The
subscript of differential operators with respect to 𝑥 is omitted, e.g., we note div ∶= div𝑥. We also denote the Euclidean
norm for all 𝜉 ∈ ℝ𝑛 by ‖𝜉‖2 ∶=

√

∑𝑛
𝑘=1 𝜉

2
𝑘.

2.2 Conservation laws
We introduce the model problem firstly.
Definition 2.1. (Model problem) We consider the following scalar conservation law:

𝜕𝑡𝑢 + div𝒇 (𝑢) = 0, ∀(𝑥, 𝑡) ∈ Ω × (0, 𝑇 ), (1)
with the initial condition

𝑢(𝑥, 0) = 𝑢0(𝑥),∀𝑥 ∈ Ω.

Assumption 2.1. (Model assumptions) We assume the problem data are such that it is meaningful to consider the
following boundary condition:

𝑢(𝑥, 𝑡) = 0, ∀(𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇 ).

Moreover, we assume that there is an invariant domain  ⊂ ℝ, which is an interval such that the invariant-domain-
preserving property is satisfied:

𝑢(𝑥, 𝑡) ∈ ,

for all (𝑥, 𝑡) ∈ Ω×(0, 𝑇 ). For conservation laws,  is a bounded interval and this property is called maximum principle.
Finally, we make the following hypotheses on the initial data and on the flux:

𝑢0 ∈ 𝐿2(Ω),

𝒇 ∈ 𝑊 1,∞(;ℝ𝑑).

Then we introduce the notions of weak and entropy solutions.
Definition 2.2. (Weak solution) We say that 𝑢 ∈ 𝐿∞(Ω×(0, 𝑇 )) is a weak solution to (1) if for all 𝜑 ∈ ∞

𝑐 (Ω×[0, 𝑇 )),
we have

∫

𝑇

0 ∫Ω
𝑢𝜕𝑡𝜑 + ∫

𝑇

0 ∫Ω
𝒇 (𝑢) ⋅ ∇𝜑 + ∫Ω

𝑢0𝜑(𝑥, 0) = 0. (2)

Definition 2.3. (Entropy pair) For any convex function 𝜂 ∈ 1() with associated flux 𝒒 ∈ 1(;ℝ𝑑) such that
𝜕𝑙𝒒(𝑣) = 𝜂′(𝑣)𝜕𝑙𝒇 (𝑣) for all 1 ≤ 𝑙 ≤ 𝑑 and all 𝑣 ∈ , we say that (𝜂, 𝒒) is an entropy pair for the conservation law (1).
Definition 2.4. (Entropy solution) We say that 𝑢 ∈ 𝐿∞(Ω × (0, 𝑇 )) is an entropy solution to (1) if for any entropy pair
(𝜂, 𝒒), and for all 𝜑 ∈ ∞

𝑐 (Ω × [0, 𝑇 );ℝ+), we have

−∫

𝑇

0 ∫Ω
𝜂(𝑢)𝜕𝑡𝜑 − ∫

𝑇

0 ∫Ω
𝒒(𝑢) ⋅ ∇𝜑 − ∫Ω

𝜂(𝑢0)𝜑(𝑥, 0) ≤ 0. (3)

The invariant-domain-preserving property is related to the Riemann problem and the Riemann average. Note that
the Riemann average is an important ingredient for the design of our scheme, so we introduce it here.
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Figure 1: Solution of Riemann problem for scalar case

Definition 2.5. (Riemann problem) The Riemann problem is defined as follows: Find the entropy solution 𝑢 such that

𝜕𝑡𝑢 + 𝜕𝑥(𝒇 (𝑢) ⋅ 𝒏) = 0, 𝑢(𝑥, 0) ∶=

{

𝑢𝐿 if 𝑥 < 0,
𝑢𝑅 if 𝑥 > 0,

(4)

where 𝑢𝐿, 𝑢𝑅 ∈ ℝ and 𝒏 is an arbitrary unit vector in ℝ𝑑 .
Definition 2.6. (Maximum wave speed) We refer to 𝜆𝐿(𝑢𝐿, 𝑢𝑅,𝒏) and 𝜆𝑅(𝑢𝐿, 𝑢𝑅,𝒏) as the left and right extreme wave
speeds for the Riemann problem, respectively. The precise definition of the wave speed can be found in Section 79.2.4
of [10]. Any real number 𝜆𝑚𝑎𝑥(𝑢𝐿, 𝑢𝑅,𝒏) satisfying the inequality

𝜆𝑚𝑎𝑥(𝑢𝐿, 𝑢𝑅,𝒏) ≥ max(|𝜆𝐿(𝑢𝐿, 𝑢𝑅,𝒏)|, |𝜆𝑅(𝑢𝐿, 𝑢𝑅,𝒏)|)

is called upper bound on the maximum wave speed.
An important property of the maximum wave speed is the following:

Lemma 2.1. (Riemann average) Let (𝜂, 𝒒) be an entropy pair, 𝑢 be the entropy solution to (4), and define the Riemann

average as 𝑢̄(𝑡, 𝑢𝐿, 𝑢𝑅) ∶= ∫
1
2

− 1
2

𝑢(𝑥, 𝑡)𝑑𝑥. Let 𝜆𝑚𝑎𝑥(𝑢𝐿, 𝑢𝑅,𝒏) be any upper bound on the maximum wave speed. Then,

for all 𝑡 ∈ [0, 1
2𝜆𝑚𝑎𝑥(𝑢𝐿,𝑢𝑅,𝒏)

],

𝑢̄(𝑡, 𝑢𝐿, 𝑢𝑅) =
1
2
(𝑢𝐿 + 𝑢𝑅) − 𝑡(𝒇 (𝑢𝑅) − 𝒇 (𝑢𝐿)) ⋅ 𝒏 ∈ 𝐶𝑜𝑛𝑣(𝑢𝐿, 𝑢𝑅),

𝜂(𝑢̄(𝑡, 𝑢𝐿, 𝑢𝑅)) ≤
1
2
(𝜂(𝑢𝐿) + 𝜂(𝑢𝑅)) − 𝑡(𝒒(𝑢𝑅) − 𝒒(𝑢𝐿)) ⋅ 𝒏,

where 𝐶𝑜𝑛𝑣(𝑢𝐿, 𝑢𝑅) denotes the set of all convex combinations of 𝑢𝐿 and 𝑢𝑅.

An example of the Riemann problem is given in Figure 1, as well as an illustration of the maximum wave speeds and
their upper bound. As we can see from the figure, when 𝑡 is sufficiently small, the solution 𝑢 is a convex combination
between 𝑢𝐿 and 𝑢𝑅.

2.3 Hyperbolic systems
Definition 2.7. (Models) We denote 𝑚 the dimension of the system, and we consider the following hyperbolic system:

𝜕𝑡𝒖 + div𝕗 (𝒖) = 0, ∀(𝑥, 𝑡) ∈ Ω × (0, 𝑇 ), (5)
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with the initial condition
𝒖(𝑥, 0) = 𝒖0(𝑥), ∀𝑥 ∈ Ω.

Assumption 2.2. (Model assumptions) We assume the solution is compactly supported. Moreover, the invariant-
domain-preserving property is satisfied, i.e., 𝒖 ∈  for all (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ). We emphasis that  is convex and can
be unbounded. Finally, we make the following hypotheses on the data and on the flux:

𝒖0 ∈ 𝐿2(Ω;ℝ𝑚),

𝕗 ∈ 𝑊 1,∞(;ℝ𝑚×𝑑).

Then we introduce the notions of weak and entropy solutions.
Definition 2.8. (Weak solution) We say that 𝒖 ∈ 𝐿∞(Ω × (0, 𝑇 );ℝ𝑚) is a weak solution to (5) if for all 𝝋 ∈ ∞

𝑐 (Ω ×
[0, 𝑇 );ℝ𝑚), we have

∫

𝑇

0 ∫Ω
𝒖𝜕𝑡𝝋 + ∫

𝑇

0 ∫Ω
𝕗 (𝒖) ∶ ∇𝝋 + ∫Ω

𝒖0𝝋(𝑥, 0) = 0. (6)

Definition 2.9. (Entropy pair) We say that (𝜂, 𝒒) is an entropy pair for (5) if the function 𝜂 ∈ 1(;ℝ) is convex and
if the function 𝒒 ∈ 1(;ℝ𝑑) is such that 𝜕𝑙𝒒𝑘(𝒗) = ∑

1≤𝑖≤𝑚 𝜕𝑖𝜂(𝒗)𝜕𝑙𝕗𝑖𝑘(𝒗), for all 1 ≤ 𝑙 ≤ 𝑚, all 1 ≤ 𝑘 ≤ 𝑑, and all
𝒗 ∈ . In other words, 𝐷𝑢𝒒(𝒗) = 𝐷𝑢𝜂(𝒗)𝐷𝑢𝕗 (𝒗), where 𝐷𝑢 is the differential operator with respect to 𝑢.
Definition 2.10. (Entropy solution) We say that 𝒖 ∈ 𝐿∞(Ω×(0, 𝑇 );ℝ𝑚) is an entropy solution to (5) if for any entropy
pair (𝜂, 𝒒), and for all 𝜑 ∈ ∞

𝑐 (Ω × [0, 𝑇 );ℝ+), we have

−∫

𝑇

0 ∫Ω
𝜂(𝒖)𝜕𝑡𝜑 − ∫

𝑇

0 ∫Ω
𝒒(𝒖) ⋅ ∇𝜑 − ∫Ω

𝜂(𝒖0)𝜑(𝑥, 0) ≤ 0. (7)

Similarly to the scalar case, the Riemann problem plays an important role, and we give the definition and properties
here.
Definition 2.11. (Riemann problem) The Riemann problem is defined as follows: Find the entropy solution 𝒖 such
that

𝜕𝑡𝒖 + 𝜕𝑥(𝕗 (𝒖) ⋅ 𝒏) = 0, 𝒖(𝑥, 0) ∶=

{

𝒖𝐿 if 𝑥 < 0,
𝒖𝑅 if 𝑥 > 0,

(8)

where 𝒖𝐿, 𝒖𝑅 ∈  and 𝒏 is an arbitrary unit vector in ℝ𝑑 .
Definition 2.12. (Maximum wave speed) We refer to 𝜆−1 ≤ 𝜆+1 ≤ 𝜆−2 ≤ .. ≤ 𝜆−𝑚 ≤ 𝜆+𝑚 as the wave speeds for the
Riemann problem. The precise definition can be found in Section 80.2.1 of [10]. Any real number 𝜆𝑚𝑎𝑥(𝒖𝐿, 𝒖𝑅,𝒏)satisfying the inequality

𝜆𝑚𝑎𝑥(𝒖𝐿, 𝒖𝑅,𝒏) ≥ max(|𝜆−1 |, |𝜆
+
𝑚|)

is called upper bound on the maximum wave speed.
One important property of the maximum wave speed is the following:

Lemma 2.2. (Riemann average) Let (𝜂, 𝒒) be an entropy pair, 𝒖 be the entropy solution to (8), and define the Riemann

average as 𝒖̄(𝑡, 𝒖𝐿, 𝒖𝑅) ∶= ∫
1
2

− 1
2

𝒖(𝑥, 𝑡)𝑑𝑥. Let 𝜆𝑚𝑎𝑥(𝒖𝐿, 𝒖𝑅,𝒏) be any upper bound on the maximum wave speed. Then,

for all 𝑡 ∈ [0, 1
2𝜆𝑚𝑎𝑥(𝒖𝐿,𝒖𝑅,𝒏)

],

𝒖̄(𝑡, 𝒖𝐿, 𝒖𝑅) =
1
2
(𝒖𝐿 + 𝒖𝑅) − 𝑡(𝕗 (𝒖𝑅) − 𝕗 (𝒖𝐿)) ⋅ 𝒏 ∈ ,

𝜂(𝒖̄(𝑡, 𝒖𝐿, 𝒖𝑅)) ≤
1
2
(𝜂(𝒖𝐿) + 𝜂(𝒖𝑅)) − 𝑡(𝒒(𝒖𝑅) − 𝒒(𝒖𝐿)) ⋅ 𝒏.
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3 Numerical analysis for conservation laws
In the first part of this section, we introduce the finite element space. The second part is devoted to describing the
scheme. In the third part, we prove that some properties satisfied for solution at the PDE level (e.g., invariant-domain-
preserving, entropy inequality) can also be satisfied for discrete solution in some sense. Moreover, we also prove that
the numerical solution converges to a weak solution at the PDE level.

3.1 Discrete setting
Definition 3.1. (Time discretization) We introduce the discrete time nodes 𝑡𝑛 for all 𝑛 ∈ 𝑇 , where 𝑇 = {0, ..., 𝑁 −
1}, 𝑡0 = 0 and 𝑡𝑁 = 𝑇 . The time step 𝜏𝑛 satisfies 𝑡𝑛+1 = 𝑡𝑛 + 𝜏𝑛 and we set 𝐼𝑛 = [𝑡𝑛, 𝑡𝑛+1).
Definition 3.2. (Mesh and FEM space) We consider a shape-regular sequence of matching meshes {ℎ}ℎ, ℎ =
max𝐾∈ℎ ℎ𝐾 where ℎ𝐾 denotes the diameter of cell 𝐾 . For simplicity, we assume that the sequence {ℎ}ℎ is quasi-
uniform. The reference element is denoted by 𝐾̂ . We denote by Φ𝐾 ∶ 𝐾̂ → 𝐾 the diffeomorphism mapping 𝐾̂ to an
arbitrary element 𝐾 ∈ ℎ. We introduce the reference finite element (𝐾̂, 𝑃 , Σ̂) and we define the scalar-valued finite
elements space

𝑉ℎ ∶= {𝑣 ∈ 0(Ω;ℝ) ∶ 𝑣|𝐾◦Φ𝐾 ∈ 𝑃 , ∀𝐾 ∈ ℎ},

where 𝑃 is the reference space. We also define the finite elements space with zero boundary condition:
𝑉 0
ℎ ∶= 𝑉ℎ ∩𝐻1

0 (Ω).

Letting 𝑛𝑠ℎ = dim𝑃 , the shape functions on the reference element are denoted by {𝜃̂𝑖}1≤𝑖≤𝑛𝑠ℎ . We assume that the basis
{𝜃̂𝑖}1≤𝑖≤𝑛𝑠ℎ has the partition of unity property:

∑

1≤𝑖≤𝑛𝑠ℎ

𝜃̂𝑖(𝑥̂) = 1, ∀𝑥̂ ∈ 𝐾̂. (9)

The global shape functions are denoted by {𝜙𝑖}𝑖∈ℎ
, where ℎ is the set of degrees of freedom. We also denote the

interior degrees of freedom as 0
ℎ ∶= {𝑖 ∈ ℎ ∶ 𝜙𝑖|𝜕Ω = 0}. These functions form a basis of 𝑉ℎ, and the partition of

unity property implies that ∑𝑖∈ℎ
𝜙𝑖(𝑥) = 1 for all 𝑥 ∈ Ω. The support of 𝜙𝑖 is denoted by 𝜔𝑖, for all 𝑖 ∈ ℎ. The set of

indices of shape functions whose support on 𝐸 is of nonzero measure is denoted by (𝐸) ∶= {𝑗 ∈ ℎ ∶ |𝜔𝑗∩𝐸| ≠ 0},
where |⋅| denotes the measure of a set. The set of indices of shape functions whose support on 𝜔𝑖 is of nonzero measure
is denoted by

(𝑖) ∶= (𝜔𝑖) = {𝑗 ∈ ℎ ∶ |𝜔𝑗 ∩ 𝜔𝑖| ≠ 0}.

This set defines the stencil for the finite element scheme.
The matrix with entries 𝑚𝑖𝑗 ∶= ∫Ω 𝜙𝑖(𝑥)𝜙𝑗(𝑥)𝑑𝑥, 𝑖, 𝑗 ∈ ℎ is called the consistent mass matrix and is denoted by

. The diagonal matrix with entries equal to 𝑚𝑖 ∶= ∫Ω 𝜙𝑖(𝑥)𝑑𝑥 is called the lumped mass matrix and is denoted by
𝐿. The partition of unity property implies that ∑𝑗∈(𝑖) 𝑚𝑖𝑗 = 𝑚𝑖. One key assumption used in the rest of the report
is that

𝑚𝑖 > 0, ∀𝑖 ∈ ℎ. (10)
The assumptions (9) and (10) hold for many Lagrange elements and for Bernstein-Bezier finite elements of any poly-
nomial degree, as mentioned in [14]. For simplicity, we only consider 𝑃1 Lagrange elements in this report.

In various bounds, we denote by𝐶 any generic constant (its value can change at each occurrence) that is independent
of ℎ and 𝑁 , but may depend on 𝑑, 𝑚, 𝑇 , the Lipschitz constants of the flux and the entropy, and some constants related
to the approximation properties of Lagrange finite element.

Owing to the mesh assumptions, we have, for all 𝑣ℎ =
∑

𝑖∈ℎ
𝑉𝑖𝜙𝑖 ∈ 𝑉ℎ, the following norm equivalence:

𝐶‖𝑣ℎ‖
2
𝐿2(Ω) ≤ ‖𝑣ℎ‖

2
𝑙2ℎ
≤ 𝐶‖𝑣ℎ‖

2
𝐿2(Ω),

where ‖𝑣ℎ‖2𝑙2ℎ
∶=

∑

𝑖∈ℎ

𝑚𝑖(𝑉𝑖)2.
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3.2 Scheme
Definition 3.3. (Scheme) We denote the spatial approximation of 𝑢 in the interval 𝐼𝑛 as

𝑢𝑛ℎ(𝑥) ∶=
∑

𝑖∈ℎ

𝑈𝑛
𝑖 𝜙𝑖(𝑥),

for all 𝑛 ∈ 𝑇 . The global approximation is defined as 𝑢ℎ,𝜏 (𝑥, 𝑡)|𝐼𝑛 ∶= 𝑢𝑛ℎ(𝑥). The scheme is defined as follows:

𝑚𝑖
𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖
𝜏𝑛

+
∑

𝑗∈(𝑖)∖{𝑖}

(

𝒇 (𝑈𝑛
𝑗 )𝒄𝑖𝑗 + 𝑑𝑛𝑖𝑗(𝑈

𝑛
𝑖 − 𝑈𝑛

𝑗 )
)

= 0, (11)

for all 𝑖 ∈ 0
ℎ and all 𝑛 ∈ 𝑇 , where 𝒄𝑖𝑗 ∶= ∫Ω 𝜙𝑖∇𝜙𝑗 ∈ ℝ𝑑 and

𝑑𝑛𝑖𝑗 ∶= max(𝜆𝑚𝑎𝑥(𝑈𝑛
𝑖 , 𝑈

𝑛
𝑗 ,𝒏𝑖𝑗)‖𝒄𝑖𝑗‖2, 𝜆𝑚𝑎𝑥(𝑈

𝑛
𝑗 , 𝑈

𝑛
𝑖 ,𝒏𝑗𝑖)‖𝒄𝑗𝑖‖2) ∈ ℝ+,

with 𝜆𝑚𝑎𝑥(𝑈𝑛
𝑖 , 𝑈

𝑛
𝑗 ,𝒏𝑖𝑗) any upper bound on the maximum wave speed in the Riemann problem with data (𝑈𝑛

𝑖 , 𝑈
𝑛
𝑗 ) and

the normal vector 𝒏𝑖𝑗 ∶= 𝒄𝑖𝑗
‖𝒄𝑖𝑗‖2

. Moreover, the following CFL condition should be satisfied with a constant 𝜌 ∈ (0, 1]:

𝜏𝑛 ≤ 𝜌 min
𝑖∈0

ℎ

𝑚𝑖
2𝑑𝑛𝑖𝑖

, (12)

where 𝑑𝑛𝑖𝑖 ∶=
∑

𝑗∈(𝑖)∖{𝑖} 𝑑
𝑛
𝑖𝑗 . The initial data is approximated by the 𝐿2-projection onto 𝑉 0

ℎ :

∫Ω
(𝑢0ℎ − 𝑢0)𝜙𝑖 = 0,

for all 𝑖 ∈ 0
ℎ. And to be consistent with our assumption on the compactness of the support of 𝑢 at the boundary, the

boundary coefficients are set to zero, i.e., 𝑈𝑛
𝑖 = 0 for all 𝑛 ∈ 𝑇 and 𝑖 ∈ ℎ ⧵0

ℎ.

3.3 Basic properties
We introduce two basic properties here: local maximum principle and discrete entropy inequality. The first one is
important for establishing the stability of the scheme and for proving that the limit of numerical solution (up to a
subsequence) is a weak solution; the second one is important for proving that the limit of numerical solution (up to a
subsequence) is the entropy solution. This will be further discussed in Section 5.

Firstly, we can rewrite the scheme for all 𝑖 ∈ 0
ℎ as follows:

𝑈𝑛+1
𝑖 =

∑

𝑗∈(𝑖)
𝜃𝑛𝑖𝑗𝑈̄

𝑛
𝑖𝑗 , (13)

where 𝜃𝑛𝑖𝑗 ∶=
2𝜏𝑛𝑑𝑛𝑖𝑗
𝑚𝑖

for all 𝑗 ∈ (𝑖)∖{𝑖}, 𝜃𝑛𝑖𝑖 ∶= 1 −
∑

𝑗∈(𝑖)∖{𝑖} 𝜃
𝑛
𝑖𝑗 , and 𝑈̄𝑛

𝑖𝑖 ∶= 𝑈𝑛
𝑖 ,

𝑈̄𝑛
𝑖𝑗 ∶=

1
2
(𝑈𝑛

𝑖 + 𝑈𝑛
𝑗 ) − (𝒇 (𝑈𝑛

𝑗 ) − 𝒇 (𝑈𝑛
𝑖 ))

𝒄𝑖𝑗
2𝑑𝑛𝑖𝑗

.

An important property is that 𝑈̄𝑛
𝑖𝑗 = ∫

1
2

− 1
2

𝑢𝑛𝑖𝑗(𝑥, 𝑡
𝑛
𝑖𝑗)𝑑𝑥, where 𝑢𝑛𝑖𝑗 is the exact solution for Riemann problem with the

initial data (𝑈𝑛
𝑖 , 𝑈

𝑛
𝑗 ), the normal vector 𝒏𝑖𝑗 , and the artificial time 𝑡𝑛𝑖𝑗 ∶=

‖𝒄𝑖𝑗‖2
2𝑑𝑛𝑖𝑗

. Owing to the definition of 𝑑𝑛𝑖𝑗 , we infer
that 𝑡𝑛𝑖𝑗 is sufficiently small so that 𝑈̄𝑛

𝑖𝑗 ∈ 𝐶𝑜𝑛𝑣(𝑈𝑛
𝑖 , 𝑈

𝑛
𝑗 ). Moreover, the CFL condition (12) gives 𝜃𝑛𝑖𝑗 ∈ [0, 1] for all

𝑗 ∈ (𝑖).
The following lemmas are proved in [12, 15]. See also Theorem 81.8, Corollary 81.9 and Theorem 81.12 in [10].
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Lemma 3.1. (Maximum principle) Under CFL condition (12), we have the local maximum principle and global max-
imum principle, i.e.,

𝑈𝑛+1
𝑖 ∈ 𝐶𝑜𝑛𝑣𝑗∈(𝑖)(𝑈𝑛

𝑗 ), 𝑢𝑛ℎ(𝑥) ∈ 𝐶𝑜𝑛𝑣𝑗∈(𝑖)(𝑈0
𝑗 ),

for all 𝑖 ∈ ℎ and all 𝑛 ∈ 𝑇 , where 𝐶𝑜𝑛𝑣𝑗∈(𝑖)(𝑈𝑛
𝑗 ) denotes the set of all convex combinations for {𝑈𝑛

𝑗 }𝑗∈(𝑖).

Lemma 3.2. (Discrete entropy inequality) Assume the CFL condition (12) is satisfied. Let (𝜂, 𝒒) be an entropy pair
for (1). Then, the following discrete entropy inequality holds true for all 𝑖 ∈ 0

ℎ and all 𝑛 ∈ 𝑇 :

𝑚𝑖
𝜏𝑛

(𝜂(𝑈𝑛+1
𝑖 ) − 𝜂(𝑈𝑛

𝑖 ) + ∫Ω
div(ℎ(𝒒(𝑢𝑛ℎ)))𝜙𝑖 +

∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝜂(𝑈

𝑛
𝑖 ) − 𝜂(𝑈𝑛

𝑗 )) ≤ 0, (14)

where ℎ(𝒒(𝑢𝑛ℎ)) ∶=
∑

𝑖∈ℎ

𝒒(𝑈𝑛
𝑖 )𝜙𝑖 is the Lagrange interpolation of 𝒒(𝑢𝑛ℎ).

3.4 Convergence analysis
In this section, we present the convergence result derived during this internship.
Lemma 3.3. (control on flux) For any function 𝑣ℎ =

∑

𝑖∈ℎ
𝑉𝑖𝜙𝑖 ∈ 𝑉 0

ℎ and any function 𝑔 ∈ 𝑊 1,∞(;ℝ𝑑), we have
the following bound:

‖𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ))‖𝐿2(Ω) + ℎ‖div(𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ)))‖𝐿2(Ω) ≤ ‖𝑔‖𝑊 1,∞()𝐶𝐼𝐶𝑑𝐶𝑖𝑛𝑣ℎ‖∇𝑣ℎ‖𝐿2(Ω), (15)
where 𝐶𝐼 is the constant from the approximation theorems for Lagrange interpolation, 𝐶𝑖𝑛𝑣 is the constant from the
discrete inverse inequality and 𝐶𝑑 is the constant for inequality ‖𝑣𝑤‖𝐿2(Ω) ≤ 𝐶𝑑‖𝑣‖𝐿∞(Ω)‖𝑤‖𝐿2(Ω) for all 𝑣 ∈
𝐿∞(Ω;ℝ𝑚×𝑑) and 𝑤 ∈ 𝐿2(Ω;ℝ𝑑).

Proof. We first prove 𝑔(𝑣ℎ) ∈ 𝑊 1,∞(Ω) by considering the lemma 1.23 in [7]: if 𝑔(𝑣ℎ) ∈ 𝑊 1,∞(ℎ) and the jump of
𝑔(𝑣ℎ) is zero, then 𝑔(𝑣ℎ) ∈ 𝑊 1,∞(Ω).

Preciously, on each cell 𝐾 ∈ ℎ, we have 𝑣ℎ|𝐾 ∈ ∞(𝐾) and 𝒇 ∈ 𝑊 1,∞(), so 𝑔(𝑣ℎ)|𝐾 ∈ 𝑊 1,∞(𝐾). This
implies 𝑔(𝑣ℎ) ∈ 𝑊 1,∞(ℎ). Since 𝑊 1,∞() ↪ 0() and 𝑣ℎ ∈ 0, we infer that 𝑔(𝑣ℎ) ∈ 0(Ω). So, on any face of
𝐾 , the jump is zero. combining these two results proves 𝑔(𝑣ℎ) ∈ 𝑊 1,∞(Ω).

We then apply the approximation result from [1] to prove the bound for ‖𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ))‖𝐿2(Ω): For any 𝑝 > 𝑑,
we have 𝑊 1,𝑝 ↪ 0 and we have 𝑊 1,𝑝 ↪ 𝐿𝑞 for all 𝑞 < ∞. So, on each cell 𝐾 ,we apply the theorem 2.9 in this article
with 𝑝 > 𝑑, 𝑞 = 2 to get

‖𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ))‖𝐿2(𝐾) ≤ 𝐶𝐼ℎ
𝑑( 12−

1
𝑝 )ℎ‖∇𝑔(𝑣ℎ)‖𝐿𝑝(𝐾)

≤ 𝐶𝐼𝐶𝑑ℎ
𝑑( 12−

1
𝑝 )ℎ‖𝑔‖𝑊 1,∞()‖∇𝑣ℎ‖𝐿𝑝(𝐾)

≤ 𝐶𝐼𝐶𝑑𝐶𝑖𝑛𝑣ℎ‖𝑔‖𝑊 1,∞()‖∇𝑣ℎ‖𝐿2(𝐾),

where we used the discrete inverse inequality(e.g. lemma 1.50 in[7]) for the last inequality. Then, we get the expected
bound by summing over all cells 𝐾 ∈ ℎ.

For ℎ‖div(𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ)))‖𝐿2(Ω), we use the stability property of Lagrange interpolation mentioned in theorem
11.13 of [9] to derive the bound: On each cell 𝐾 , we use the Hölder inequality to get

‖div(𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ))‖𝐿2(𝐾)) ≤ ℎ𝑑(
1
2−

1
𝑝 )
‖div(𝑔(𝑣ℎ) − ℎ(𝑔(𝑣ℎ))‖𝐿𝑝(𝐾))

≤ 𝐶𝐼ℎ
𝑑( 12−

1
𝑝 )
‖∇𝑔(𝑣ℎ)‖𝐿𝑝(𝐾)

≤ 𝐶𝐼𝐶𝑑ℎ
𝑑( 12−

1
𝑝 )
‖𝑔‖𝑊 1,∞()‖∇𝑣ℎ‖𝐿𝑝(𝐾)

≤ 𝐶𝐼𝐶𝑑𝐶𝑖𝑛𝑣‖𝑔‖𝑊 1,∞()‖∇𝑣ℎ‖𝐿2(𝐾).

Then, summing over 𝐾 ∈ ℎ concludes the proof.
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Lemma 3.4. (Estimate on temporal accumulation) Under the CFL condition (12), we have the following estimate for
all 𝑛 ∈ 𝑇 :

‖𝑢𝑛+1ℎ − 𝑢𝑛ℎ‖
2
𝑙2ℎ
≤ 2𝜌𝜏𝑛𝑏𝑛ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ), (16)

where 𝑏𝑛ℎ(𝑣ℎ, 𝑤ℎ) ∶=
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑉𝑖 − 𝑉𝑗)(𝑊𝑖 −𝑊𝑗), for all 𝑣ℎ, 𝑤ℎ ∈ 𝑉 0

ℎ .

Proof. With the help of (13) and the CFL condition (12), we obtain

𝑚𝑖(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )
2 = 𝑚𝑖

(

∑

𝑗∈(𝑖)
𝜃𝑛𝑖𝑗(𝑈̄

𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
)2

=
4𝜏2𝑛
𝑚𝑖

(

∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑈̄

𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
)2

≤ 𝜌𝜏𝑛
2
𝑑𝑛𝑖𝑖

(

∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑈̄

𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
)2

.

Then, the Cauchy-Schwarz inequality implies that
𝑚𝑖(𝑈𝑛+1

𝑖 − 𝑈𝑛
𝑖 )

2 ≤ 2𝜌𝜏𝑛
∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑈̄

𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
2.

Now, we take the sum over all 𝑖 ∈ ℎ , notice that 𝑈̄𝑛
𝑖𝑗 = 𝑈̄𝑛

𝑗𝑖 and 𝑑𝑛𝑖𝑗 = 𝑑𝑛𝑗𝑖, so that
∑

𝑖∈ℎ

𝑚𝑖(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )
2 ≤ 2𝜌𝜏𝑛

∑

𝑖∈ℎ,𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑈̄

𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
2

= 2𝜌𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗

(

(𝑈̄𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
2 + (𝑈̄𝑛

𝑖𝑗 − 𝑈𝑛
𝑗 )

2
)

.

Then, we introduce the quadratic function Φ(𝑥, 𝑎, 𝑏) ∶= (𝑥− 𝑎)2 + (𝑥− 𝑏)2 which takes values in [ 1
2 (𝑏− 𝑎)2, (𝑏− 𝑎)2

]

for all 𝑥 ∈ 𝐶𝑜𝑛𝑣(𝑎, 𝑏). Thus, by considering this function and noticing that 𝑈̄𝑛
𝑖𝑗 ∈ 𝐶𝑜𝑛𝑣(𝑈𝑛

𝑖 , 𝑈
𝑛
𝑗 ), we have

∑

𝑖∈ℎ

𝑚𝑖(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )
2 ≤ 2𝜌𝜏𝑛

∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗

(

(𝑈̄𝑛
𝑖𝑗 − 𝑈𝑛

𝑖 )
2 + (𝑈̄𝑛

𝑖𝑗 − 𝑈𝑛
𝑗 )

2
)

= 2𝜌𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗Φ(𝑈̄𝑛

𝑖𝑗 , 𝑈
𝑛
𝑖 , 𝑈

𝑛
𝑗 )

≤ 2𝜌𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑈

𝑛
𝑖 − 𝑈𝑛

𝑗 )
2.

This proves (16).
Assumption 3.1. (BV-like estimate) We assume that ∑𝑛∈𝑇

𝜏𝑛ℎ‖∇𝑢𝑛ℎ‖
2
𝐿2(Ω)

≤ 𝐶 .
Lemma 3.5. (Bound on dissipation) Assume the CFL condition (12) holds true with 𝜌 < 1 and Assumption 3.1 holds.
Then we have the following stability property:

‖𝑢𝑁ℎ ‖

2
𝑙2ℎ
+ 2(1 − 𝜌)

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ) ≤ ‖𝑢0ℎ‖

2
𝑙2ℎ
+ 𝐶. (17)

Proof. We multiply the scheme by 2𝜏𝑛𝑈𝑛
𝑖 and sum over all 𝑖 ∈ ℎ and 𝑛 ∈ 𝑇 , and use the CFL condition (12)

to obtain the expected bound. More precisely, we start by multiplying (11) by 2𝜏𝑛𝑈𝑛
𝑖 , and notice that 2𝑎𝑏 − 2𝑏2 =

𝑎2 − 𝑏2 − (𝑎 − 𝑏)2. This gives

𝑚𝑖(𝑈𝑛+1
𝑖 )2 + 2𝜏𝑛 ∫Ω

divℎ(𝒇 (𝑢𝑛ℎ))𝜙𝑖𝑈
𝑛
𝑖 + 2𝜏𝑛

∑

𝑗∈(𝑖)
𝑑𝑖𝑗(𝑈𝑛

𝑖 − 𝑈𝑛
𝑗 )𝑈

𝑛
𝑖 = 𝑚𝑖(𝑈𝑛

𝑖 )
2 + 𝑚𝑖(𝑈𝑛+1

𝑖 − 𝑈𝑛
𝑖 )

2.

Then, we sum over all 𝑖 ∈ ℎ and 𝑛 ∈ 𝑇 to get

‖𝑢𝑁ℎ ‖

2
𝑙2ℎ
+ 2

∑

𝑛∈𝑇

𝜏𝑛 ∫Ω
divℎ(𝒇 (𝑢𝑛ℎ))𝑢

𝑛
ℎ + 2

∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑖𝑗(𝑈𝑛

𝑖 − 𝑈𝑛
𝑗 )

2 = ‖𝑢0ℎ‖
2
𝑙2ℎ
+

∑

𝑛∈𝑇

‖𝑢𝑛+1ℎ − 𝑢𝑛ℎ‖
2
𝑙2ℎ
. (18)
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We first estimate ∫Ω divℎ(𝒇 (𝑢𝑛ℎ))𝑢
𝑛
ℎ. We remove and add some terms to get

divℎ(𝒇 (𝑢𝑛ℎ))𝑢
𝑛
ℎ = div

(

ℎ(𝒇 (𝑢𝑛ℎ)) − 𝒇 (𝑢𝑛ℎ)
)

𝑢𝑛ℎ + div𝒇 (𝑢𝑛ℎ)𝑢
𝑛
ℎ.

Noticing that 𝑢𝑛ℎ|𝜕Ω = 0, introducing 𝒒(𝑢) = ∫ 𝑢
0 𝒇 (𝑠)𝑑𝑠 and using the Stokes formula, we get

∫Ω
div𝒇 (𝑢𝑛ℎ)𝑢

𝑛
ℎ = −∫Ω

𝒇 (𝑢𝑛ℎ)∇𝑢
𝑛
ℎ = −∫Ω

div𝒒(𝑢𝑛ℎ) = −∫𝜕Ω
𝒒(𝑢𝑛ℎ)𝑛Ω = ∫𝜕Ω

𝒒(0)𝑛Ω = 0.

Moreover, integrating by parts and using the approximation properties of Lagrange interpolation, we infer that
|

|

|∫Ω
div

(

ℎ(𝒇 (𝑢𝑛ℎ)) − 𝒇 (𝑢𝑛ℎ)
)

𝑢𝑛ℎ
|

|

|

= |

|

|∫Ω

(

ℎ(𝒇 (𝑢𝑛ℎ)) − 𝒇 (𝑢𝑛ℎ)
)

∇𝑢𝑛ℎ
|

|

|

≤ ‖ℎ(𝒇 (𝑢𝑛ℎ)) − 𝒇 (𝑢𝑛ℎ)‖𝐿2(Ω)‖∇𝑢
𝑛
ℎ‖𝐿2(Ω)

≤ 𝐶ℎ‖∇𝒇 (𝑢𝑛ℎ)‖𝐿2(Ω)‖∇𝑢
𝑛
ℎ‖𝐿2(Ω)

≤ 𝐶ℎ‖∇𝑢𝑛ℎ‖
2
𝐿2(Ω),

where 𝐶 depends on the Lipschitz constant of 𝒇 . So we get
∑

𝑛∈𝑇

𝜏𝑛
|

|

|∫Ω
divℎ(𝒇 (𝑢𝑛ℎ))𝑢

𝑛
ℎ
|

|

|

≤ 𝐶
∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝑢𝑛ℎ‖
2
𝐿2(Ω). (19)

For the last term on the right-hand side of (18), we use (16) to infer that
∑

𝑛∈𝑇

‖𝑢𝑛+1ℎ − 𝑢𝑛ℎ‖
2
𝑙2ℎ
≤ 2𝜌

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ). (20)

After obtaining the estimates (19) and (20), we put them into (18) and obtain
‖𝑢𝑁ℎ ‖

2
𝑙2ℎ
+ 2(1 − 𝜌)

∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑈

𝑛
𝑖 − 𝑈𝑛

𝑗 )
2 ≤ ‖𝑢0ℎ‖

2
𝑙2ℎ
+ 𝐶

∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝑢𝑛ℎ‖
2
𝐿2(Ω).

We conclude by using Assumption 3.1.

Assumption 3.2. (Convergence in 𝐿1) We assume that the sequence of numerical solutions {𝑢ℎ,𝜏}ℎ has a subsequence
(still denoted by {𝑢ℎ,𝜏}ℎ) which converges strongly to some function 𝑢 ∈ 𝐿∞(Ω×(0, 𝑇 )) in 𝐿1, i.e., that limℎ→0‖𝑢ℎ,𝜏 −
𝑢‖𝐿1(Ω×(0,𝑇 )) = 0.
Theorem 3.1. (Convergence of the scheme) Assume that the CFL condition (12) holds with 𝜌 < 1, and that Assumptions
3.1 and 3.2 hold. Then, the limit 𝑢 of the sequence of numerical solutions (up to a subsequence) is a weak solution of
(1), i.e., for all 𝜑 ∈ ∞

𝑐 (Ω × [0, 𝑇 )), we have

∫

𝑇

0 ∫Ω
𝑢𝜕𝑡𝜑 + ∫

𝑇

0 ∫Ω
𝒇 (𝑢) ⋅ ∇𝜑 + ∫Ω

𝑢0𝜑(𝑥, 0) = 0.

Proof. We introduce the the Lagrange interpolant 𝜑𝑛
ℎ ∶= ℎ(𝜑(⋅, 𝑡𝑛)) =

∑

𝑖∈ℎ
𝜑𝑛
𝑖𝜙𝑖, with 𝜑𝑛

𝑖 ∶= 𝜑(𝑥𝑖, 𝑡𝑛) where 𝑥𝑖denotes the 𝑖th interpolation node, and we introduce the notation 𝜑𝑛 ∶= 𝜑(⋅, 𝑡𝑛). We multiply the scheme (11) by 𝜑𝑛
𝑖and sum over all 𝑖 ∈ ℎ and all 𝑛 ∈ 𝑇 to get

𝑇1,ℎ + 𝑇2,ℎ + 𝑇3,ℎ = 0, (21)
where

𝑇1,ℎ ∶=
∑

𝑛∈𝑇

∑

𝑖∈ℎ

𝑚𝑖(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )𝜑
𝑛
𝑖 ,

𝑇2,ℎ ∶=
∑

𝑛∈𝑇

𝜏𝑛 ∫Ω
divℎ(𝒇 (𝑢𝑛ℎ))𝜑

𝑛
ℎ,

𝑇3,ℎ ∶=
∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑈

𝑛
𝑖 − 𝑈𝑛

𝑗 )(𝜑
𝑛
𝑖 − 𝜑𝑛

𝑗 ).
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Similarly, we introduce two terms:

𝑇̃1,ℎ ∶= −∫

𝑇

0 ∫Ω
𝑢ℎ,𝜏𝜕𝑡𝜑 − ∫Ω

𝑢0𝜑(𝑥, 0),

𝑇̃2,ℎ ∶= −∫

𝑇

0 ∫Ω
𝒇 (𝑢ℎ,𝜏 ) ⋅ ∇𝜑.

We will prove that 𝑇1,ℎ − 𝑇̃1,ℎ
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0, 𝑇2,ℎ − 𝑇̃2,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0 and 𝑇3,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0. Then, passing to the limit in (21) gives

𝑇̃1,ℎ + 𝑇̃2,ℎ
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0. After that, we decompose the left-hand side of (2) into two parts:

𝑇1,0 ∶= −∫

𝑇

0 ∫Ω
𝑢𝜕𝑡𝜑 − ∫Ω

𝑢0𝜑(𝑥, 0),

𝑇2,0 ∶= −∫

𝑇

0 ∫Ω
𝒇 (𝑢) ⋅ ∇𝜑.

Then, using Assumption 3.2, we conclude by observing that 𝑇̃1,ℎ
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 𝑇1,0 and 𝑇̃2,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 𝑇2,0.

We start with 𝑇1,ℎ − 𝑇̃1,ℎ which can be considered as the error in time. The main idea is to bound the temporal
accumulation term 𝑚𝑖|𝑈𝑛+1

𝑖 − 𝑈𝑛
𝑖 | using (16) and to use the regularity of the test function. In details, integrating by

parts in 𝑇̃1,ℎ in time gives

𝑇̃1,ℎ =
∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )∫𝜔𝑖

𝜙𝑖𝜑
𝑛 + ∫Ω

(𝑢0ℎ − 𝑢0)𝜑0.

So,
𝑇1,ℎ − 𝑇̃1,ℎ =

∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )∫𝜔𝑖

𝜙𝑖(𝜑𝑛
𝑖 − 𝜑𝑛) − ∫Ω

(𝑢0ℎ − 𝑢0)𝜑0.

The 𝐿2-orthogonality of the initial condition ensures the second term tends to zero:
|

|

|∫Ω
(𝑢0ℎ − 𝑢0)𝜑0|

|

|

= |

|

|∫Ω
(𝑢0ℎ − 𝑢0)(𝜑0 − ℎ(𝜑0))||

|

≤ 𝐶‖𝑢0‖𝐿2(Ω)‖𝜑
0 − ℎ(𝜑0)‖𝐿2(Ω)

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0.

For the first term, we need the following relation which is valid owing to the mesh assumptions:
𝐶|𝜔𝑖| ≤ 𝑚𝑖 ≤ |𝜔𝑖|, ∀𝑖 ∈ ℎ.

We invoke this relation to obtain
|

|

|

∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )∫𝜔𝑖

𝜙𝑖(𝜑𝑛
𝑖 − 𝜑𝑛)||

|

≤ 𝐶
∑

𝑛∈𝑇

∑

𝑖∈ℎ

|𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 |∫𝜔𝑖

|𝜙𝑖|ℎ ≤ 𝐶
∑

𝑛∈𝑇

ℎ
∑

𝑖∈ℎ

𝑚𝑖|𝑈
𝑛+1
𝑖 − 𝑈𝑛

𝑖 |.

Using the Cauchy-Schwarz inequality, Young’s inequality, 𝑚𝑖 > 0 for all 𝑖 ∈ ℎ and ∑

𝑖∈ℎ
𝑚𝑖 = |Ω|, we get

∑

𝑖∈ℎ

𝑚𝑖|𝑈
𝑛+1
𝑖 − 𝑈𝑛

𝑖 | ≤ |Ω|1∕2
(

∑

𝑖∈ℎ

𝑚𝑖(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )
2
)1∕2

≤ 1
2
ℎ1∕2|Ω| + 1

2
ℎ−1∕2

∑

𝑖∈ℎ

𝑚𝑖(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )
2.

Inserting this estimate into the above inequality, using (16) and ∑

𝑛∈𝑇
𝜏𝑛𝑏𝑛ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ) ≤ 𝐶 , we infer that

|

|

|

∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 )∫𝜔𝑖

𝜙𝑖(𝜑𝑛
𝑖 − 𝜑𝑛)||

|

≤ 𝐶
∑

𝑛∈𝑇

ℎ
∑

𝑖∈ℎ

𝑚𝑖|𝑈
𝑛+1
𝑖 − 𝑈𝑛

𝑖 |

≤ 𝐶ℎ1∕2|Ω|
∑

𝑛∈𝑇

ℎ + 𝐶ℎ1∕2
∑

𝑛∈𝑇

‖𝑢𝑛+1ℎ − 𝑢𝑛ℎ‖
2
𝑙2ℎ
≤ 𝐶ℎ1∕2.
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To estimate 𝑇2,ℎ − 𝑇̃2,ℎ which can be considered as the error in space, the idea is to use Assumption 3.1. More
precisely,

𝑇2,ℎ − 𝑇̃2,ℎ =
∑

𝑛∈𝑇
∫𝐼𝑛 ∫Ω

𝒇 (𝑢𝑛ℎ) ⋅ ∇𝜑
𝑛 − ℎ(𝒇 (𝑢𝑛ℎ)) ⋅ ∇𝜑

𝑛
ℎ

=
∑

𝑛∈𝑇
∫𝐼𝑛 ∫Ω

(

𝒇 (𝑢𝑛ℎ) − ℎ(𝒇 (𝑢𝑛ℎ))
)

⋅ ∇𝜑𝑛 + ℎ(𝒇 (𝑢𝑛ℎ)) ⋅ ∇(𝜑
𝑛 − 𝜑𝑛

ℎ).

The second term converges to zero owing to the stability of Lagrange interpolation and 𝒇 (𝑢ℎ,𝜏 ) ∈ 𝑊 1,∞ ↪ 0. For
the first term, we use the approximation properties of Lagrange interpolation to obtain

|

|

|∫Ω

(

𝒇 (𝑢𝑛ℎ) − ℎ(𝒇 (𝑢𝑛ℎ))
)

⋅ ∇𝜑𝑛|
|

|

≤ ‖𝒇 (𝑢𝑛ℎ) − ℎ(𝒇 (𝑢𝑛ℎ))‖𝐿2(Ω)‖∇𝜑
𝑛
‖𝐿2(Ω) ≤ 𝐶(ℎ‖∇𝑢𝑛ℎ‖

2
𝐿2(Ω))

1∕2ℎ1∕2.

Summing over 𝑛 ∈ 𝑇 gives
∑

𝑛∈𝑇
∫𝐼𝑛

|

|

|∫Ω

(

𝒇 (𝑢𝑛ℎ) − ℎ(𝒇 (𝑢𝑛ℎ))
)

⋅ ∇𝜑𝑛|
|

|

≤ 𝐶
∑

𝑛∈𝑇

𝜏𝑛(ℎ‖∇𝑢𝑛ℎ‖
2
𝐿2(Ω))

1∕2ℎ1∕2

≤ ℎ1∕2
(

∑

𝑛∈𝑇

𝜏𝑛
)1∕2( ∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝑢𝑛ℎ‖
2
𝐿2(Ω)

)1∕2
≤ 𝐶ℎ1∕2.

For the viscosities dissipation term 𝑇3,ℎ, the Cauchy-Schwarz inequality implies that:

|𝑇3,ℎ| ≤
|

|

|

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝜑

𝑛
ℎ)
|

|

|

≤
∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ)

1∕2𝑏𝑛ℎ(𝜑
𝑛
ℎ, 𝜑

𝑛
ℎ)

1∕2

≤
(

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ)𝑏

𝑛
ℎ(𝜑

𝑛
ℎ, 𝜑

𝑛
ℎ)
)1∕2( ∑

𝑛∈𝑇

𝜏𝑛
)1∕2

.

To estimate 𝑏𝑛ℎ(𝜑
𝑛
ℎ, 𝜑

𝑛
ℎ), we use the mesh assumptions that imply |ℎ| = 𝑂(ℎ−𝑑) and 𝑑𝑛𝑖𝑗 ≤ 𝐶ℎ𝑑−1. The regularity of

𝜑 implies (𝜑𝑛
𝑖 −𝜑𝑛

𝑗 )
2 ≤ 𝐶ℎ2. So, we have 𝑏𝑛ℎ(𝜑𝑛

ℎ, 𝜑
𝑛
ℎ) =

∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝜑

𝑛
𝑖 −𝜑𝑛

𝑗 )
2 ≤ 𝐶ℎ−𝑑 ⋅ (ℎ𝑑−1ℎ2) ≤ 𝐶ℎ, which gives

|𝑇3,ℎ| ≤ 𝐶ℎ1∕2.
Collecting all the estimates gives 𝑇̃1,ℎ + 𝑇̃2,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0.

Since {𝑢ℎ,𝜏}ℎ converges to 𝑢 in 𝐿1 owing to Assumption 3.2 and 𝒇 is Lipschitz continuous, we have

|

|

|∫

𝑇

0 ∫Ω
(𝑢ℎ,𝜏 − 𝑢)𝜕𝑡𝜑

|

|

|

≤ 𝐶‖𝑢ℎ,𝜏 − 𝑢‖𝐿1(Ω×(0,𝑇 ))
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0,

|

|

|∫

𝑇

0 ∫Ω

(

𝒇 (𝑢ℎ,𝜏 ) − 𝒇 (𝑢)
)

⋅ ∇𝜑||
|

≤ 𝐶‖𝒇 (𝑢ℎ,𝜏 ) − 𝒇 (𝑢)‖𝐿1(Ω×(0,𝑇 )) ≤ 𝐶‖𝑢ℎ,𝜏 − 𝑢‖𝐿1(Ω×(0,𝑇 ))
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0.

Then, invoking 𝑇̃1,ℎ + 𝑇̃2,ℎ
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0, we complete the proof.

4 Numerical analysis for hyperbolic systems
This section is the generalization of Section 3, where the scheme for hyperbolic systems is presented and analyzed.
We follow the notation introduced in Section 3 when there is no ambiguity. Since the proof is similar to the one from
Section 3, we do not give detailed proofs for most results.
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4.1 Scheme
Definition 4.1. (Scheme) We denote the spatial approximation of 𝒖 in the interval 𝐼𝑛 as

𝒖𝑛ℎ(𝑥) ∶=
∑

𝑖∈ℎ

𝑼 𝑛
𝑖𝜙𝑖(𝑥),

for all 𝑛 ∈ 𝑇 . The global approximation is defined as 𝒖ℎ,𝜏 (𝑥, 𝑡)|𝐼𝑛 ∶= 𝒖𝑛ℎ(𝑥). The scheme is defined as follows:

𝑚𝑖
𝑼 𝑛+1

𝑖 − 𝑼 𝑛
𝑖

𝜏𝑛
+

∑

𝑗∈(𝑖)∖{𝑖}

(

𝕗 (𝑼 𝑛
𝑗 )𝒄𝑖𝑗 + 𝑑𝑛𝑖𝑗(𝑼

𝑛
𝑖 − 𝑼 𝑛

𝑗 )
)

= 0, (22)

for all 𝑖 ∈ 0
ℎ and all 𝑛 ∈ 𝑇 . Moreover, the following CFL condition should be satisfied with a constant 𝜌 ∈ (0, 1]:

𝜏𝑛 ≤ 𝜌 min
𝑖∈0

ℎ

𝑚𝑖
2𝑑𝑛𝑖𝑖

. (23)

As before, the initial data is approximated by the 𝐿2-projection onto 𝑉 0
ℎ . And boundary coefficients are set to zero.

4.2 Basic properties
Firstly, we can rewrite the scheme for all 𝑖 ∈ 0

ℎ as follows:
𝑼 𝑛+1

𝑖 =
∑

𝑗∈(𝑖)
Θ𝑛
𝑖𝑗𝑼̄

𝑛
𝑖𝑗 , (24)

where Θ𝑛
𝑖𝑗 ∶=

2𝜏𝑛𝑑𝑛𝑖𝑗
𝑚𝑖

for all 𝑗 ∈ (𝑖)∖{𝑖}, Θ𝑛
𝑖𝑖 ∶= 1 −

∑

𝑗∈(𝑖)∖{𝑖} Θ
𝑛
𝑖𝑗 , and 𝑼̄ 𝑛

𝑖𝑖 ∶= 𝑼 𝑛
𝑖 ,

𝑼̄ 𝑛
𝑖𝑗 ∶=

1
2
(𝑼 𝑛

𝑖 + 𝑼 𝑛
𝑗 ) − (𝕗 (𝑼 𝑛

𝑗 ) − 𝕗 (𝑼 𝑛
𝑖 ))

𝒄𝑖𝑗
2𝑑𝑛𝑖𝑗

.

An important property is that 𝑼̄ 𝑛
𝑖𝑗 = ∫

1
2

− 1
2

𝒖𝑛𝑖𝑗(𝑥, 𝑡
𝑛
𝑖𝑗)𝑑𝑥, where 𝒖𝑛𝑖𝑗 is the exact solution for Riemann problem with the

initial data (𝑼 𝑛
𝑖 ,𝑼

𝑛
𝑗 ), the normal vector 𝒏𝑖𝑗 , and the artificial time 𝑡𝑛𝑖𝑗 ∶= ‖𝒄𝑖𝑗‖2

2𝑑𝑛𝑖𝑗
. Owing to the choice of 𝑑𝑛𝑖𝑗 , 𝑡𝑛𝑖𝑗 is

sufficiently small so that 𝑈̄𝑛
𝑖𝑗 ∈ . Moreover, the CFL condition (23) gives Θ𝑛

𝑖𝑗 ∈ [0, 1] for all 𝑗 ∈ (𝑖).
Lemma 4.1. (Invariant-domain-preserving) Under CFL condition (23), we have 𝒖ℎ,𝜏 ∈ .

Lemma 4.2. (Discrete entropy inequality) Assume the CFL condition (23) is satisfied. Let (𝜂, 𝒒) be an entropy pair
for (5). Then, the following discrete entropy inequality holds true for all 𝑖 ∈ 0

ℎ and all 𝑛 ∈ 𝑇 :

𝑚𝑖
𝜏𝑛

(𝜂(𝑼 𝑛+1
𝑖 ) − 𝜂(𝑼 𝑛

𝑖 ) + ∫Ω
div(ℎ(𝒒(𝒖𝑛ℎ)))𝜙𝑖 +

∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝜂(𝑼

𝑛
𝑖 ) − 𝜂(𝑼 𝑛

𝑗 )) ≤ 0. (25)

4.3 Convergence analysis
Hyperbolic systems are slightly different from conservation laws, and these differences cause the problem for our
analysis. Thus we need to add a few assumptions. Since the square entropy 𝜂(𝒖) = 1

2𝒖
2 is not always relevant for

hyperbolic systems, we need to add some hypotheses on the entropy for establishing the bound on dissipation:
Assumption 4.1. (Convexity of the entropy) The entropy satisfies the following properties:

𝜂 ∈ 2(;ℝ),
𝛼𝜉2 ≤ 𝜉𝑇𝐷2

𝑢𝜂𝜉 ≤ 𝜉2, ∀𝜉 ∈ ℝ𝑚, (26)
where 𝛼 > 0, and 𝐷2

𝑢𝜂 is the Hessian matrix of 𝜂 with respect to 𝑢. Note that the second bound in (26) is just a
normalization of the entropy
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Figure 2: Illustration of Assumption 4.2

Moreover, since the locality of the invariant-domain-preserving property (local maximum principal in scalar case)
cannot be guaranteed, we need one more assumption which guarantees quasi-locality:
Assumption 4.2. (Local invairiant-domain-preserving property) We assume there exists a constant 𝛿0 > 0 such that
𝑼̄ 𝑛

𝑖𝑗 ∈ 𝐵(
𝑼𝑛

𝑖 +𝑼
𝑛
𝑗

2 , 12𝛿0‖𝑼
𝑛
𝑖 −𝑼 𝑛

𝑗‖2) for all 𝑖, 𝑗 ∈ ℎ and all 𝑛 ∈ 𝑇 , where 𝐵(𝑥0, 𝑟) denotes the ball in ℝ𝑚 with center
𝑥0 and radius 𝑟. An example is given in Figure 2.
Remark 4.1. (Bound of 𝛿0) In the following analysis, we assume without loss of generality 𝛿0 ≥ 1, since in scalar case,
we have 𝛿0 = 1.
Lemma 4.3. (Estimate on temporal accumulation) Under the CFL condition (23) and Assumption 4.2, we have the
following estimate for all 𝑛 ∈ 𝑇 :

‖𝒖𝑛+1ℎ − 𝒖𝑛ℎ‖
2
𝑙2ℎ
≤ (1 + 𝛿20)𝜌𝜏𝑛𝑏

𝑛
ℎ(𝒖

𝑛
ℎ, 𝒖

𝑛
ℎ), (27)

where 𝑏𝑛ℎ(𝒗ℎ,𝒘ℎ) ∶=
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑽 𝑖 − 𝑽 𝑗)𝑇 (𝑾 𝑖 −𝑾 𝑗), for all 𝒗ℎ,𝒘ℎ ∈

(

𝑉 0
ℎ
)𝑚.

Proof. We use (24) and the CFL condition (23) to infer that

𝑚𝑖(𝑼 𝑛+1
𝑖 − 𝑼 𝑛

𝑖 )
2 = 𝑚𝑖

(

∑

𝑗∈(𝑖)
Θ𝑛
𝑖𝑗(𝑼̄

𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
)2

=
4𝜏2𝑛
𝑚𝑖

(

∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑼̄

𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
)2

≤ 𝜌𝜏𝑛
2
𝑑𝑛𝑖𝑖

(

∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑼̄

𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
)2

.

The Cauchy-Schwarz inequality implies that
𝑚𝑖(𝑼 𝑛+1

𝑖 − 𝑼 𝑛
𝑖 )

2 ≤ 2𝜌𝜏𝑛
∑

𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑼̄

𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
2.

Now, we take the sum over all 𝑖 ∈ ℎ, notice that 𝑼̄ 𝑛
𝑖𝑗 = 𝑼̄ 𝑛

𝑗𝑖 and 𝑑𝑛𝑖𝑗 = 𝑑𝑛𝑗𝑖. This gives
∑

𝑖∈ℎ

𝑚𝑖(𝑼 𝑛+1
𝑖 − 𝑼 𝑛

𝑖 )
2 ≤ 2𝜌𝜏𝑛

∑

𝑖∈ℎ,𝑗∈(𝑖)
𝑑𝑛𝑖𝑗(𝑼̄

𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
2

= 2𝜌𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗

(

(𝑼̄ 𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
2 + (𝑼̄ 𝑛

𝑖𝑗 − 𝑼 𝑛
𝑗 )

2
)

.
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Then, we denoteΦ(𝒗,𝒂, 𝒃) ∶= (𝒗−𝒂)2+(𝒗−𝒃)2. Owing to Assumption 4.2, we have 𝑼̄ 𝑛
𝑖𝑗 ∈ 𝐵(

𝑼𝑛
𝑖 +𝑼

𝑛
𝑗

2 , 12𝛿0‖𝑼
𝑛
𝑖−𝑼

𝑛
𝑗‖2),

so that (𝑼̄ 𝑛
𝑖𝑗 − 𝑼 𝑛

𝑖 )
2 + (𝑼̄ 𝑛

𝑖𝑗 − 𝑼 𝑛
𝑗 )

2 ≤
1+𝛿20
2 (𝑼 𝑛

𝑖 − 𝑼 𝑛
𝑗 )

2 as illustrated in Figure 2. This implies that Φ(𝑼̄ 𝑛
𝑖𝑗 ,𝑼

𝑛
𝑖 ,𝑼

𝑛
𝑗 ) ≤

1+𝛿20
2 (𝑼 𝑛

𝑖 − 𝑼 𝑛
𝑗 )

2. Hence, we get
∑

𝑖∈ℎ

𝑚𝑖(𝑼 𝑛+1
𝑖 − 𝑼 𝑛

𝑖 )
2 ≤ (1 + 𝛿20)𝜌𝜏𝑛

∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑼

𝑛
𝑖 − 𝑼 𝑛

𝑗 )
2.

This completes the proof.
Assumption 4.3. (BV-like estimate) We assume that ∑𝑛∈𝑇

𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖
2
𝐿2(Ω)

≤ 𝐶 .
Lemma 4.4. (Bound on dissipation) Assume that the CFL condition (23) holds true with 𝜌 < 2𝛼

1+𝛿20
and that Assumptions

4.1, 4.2 and 4.3 hold true. Thus, we have the following stability property:
∑

𝑖∈ℎ

𝑚𝑖𝜂
𝑁
𝑖 +

(

2𝛼 − 𝜌(1 + 𝛿20)
)

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝒖

𝑛
ℎ, 𝒖

𝑛
ℎ) ≤

∑

𝑖∈ℎ

𝑚𝑖𝜂
0
𝑖 + 𝐶, (28)

where 𝜂𝑛𝑖 ∶= 𝜂(𝑼 𝑛
𝑖 ).

Proof. We denote 𝜂𝑛ℎ ∶=
∑

𝑖∈ℎ
𝜂𝑛𝑖 𝜙𝑖, 𝐷𝑢𝜂𝑛ℎ ∶=

∑

𝑖∈ℎ
𝐷𝑢𝜂𝑛𝑖 𝜙𝑖, with 𝐷𝑢𝜂𝑛𝑖 ∶= 𝐷𝑢𝜂(𝑼 𝑛

𝑖 ), and 𝕗𝑛ℎ ∶=
∑

𝑖∈ℎ
𝕗 (𝑼 𝑛

𝑖 )𝜙𝑖.
We multiply the scheme (22) by 2𝜏𝑛𝐷𝑢𝜂𝑛𝑖 , sum over all 𝑖 ∈ ℎ and all 𝑛 ∈ 𝑇 , and use the CFL condition (23) to
obtain the expected bound. More precisely, we start by multiplying (22) by 2𝜏𝑛𝐷𝑢𝜂𝑛𝑖 , notice that (𝑼 𝑛+1

𝑖 − 𝑼 𝑛
𝑖 )𝐷𝑢𝜂𝑛𝑖 =

𝜂𝑛+1𝑖 − 𝜂𝑛𝑖 −
1
2 (𝑼

𝑛+1
𝑖 − 𝑼 𝑛

𝑖 )
𝑇𝑛

𝑖 (𝑼
𝑛+1
𝑖 − 𝑼 𝑛

𝑖 ), where 𝑛
𝑖 ∶= ∫ 1

0 (1 − 𝑡)𝐷2
𝑢𝜂(𝑼

𝑛
𝑖 + 𝑡(𝑼 𝑛+1

𝑖 − 𝑼 𝑛
𝑖 )). This gives

𝑚𝑖𝜂
𝑛+1
𝑖 + 2𝜏𝑛 ∫Ω

div𝕗𝑛ℎ ⋅ 𝜙𝑖𝐷𝑢𝜂
𝑛
𝑖 + 2𝜏𝑛

∑

𝑗∈(𝑖)
𝑑𝑖𝑗(𝑈𝑛

𝑖 − 𝑈𝑛
𝑗 )𝐷𝑢𝜂

𝑛
𝑖 ≤ 𝑚𝑖𝜂

𝑛
𝑖 + 𝑚𝑖(𝑈𝑛+1

𝑖 − 𝑈𝑛
𝑖 )

2,

Since ‖𝑛
𝑖 ‖2 ≤ 1 by (26) for all 𝑖 ∈ ℎ and all 𝑛 ∈ 𝑇 . Then, we sum over all 𝑖 ∈ ℎ and all 𝑛 ∈ 𝑇 to get

∑

𝑖∈ℎ

𝑚𝑖𝜂
𝑁
𝑖 + 2

∑

𝑛∈𝑇

𝜏𝑛 ∫Ω
div𝕗𝑛ℎ ⋅𝐷𝑢𝜂

𝑛
ℎ + 2𝛼

∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑖𝑗(𝑼 𝑛

𝑖 − 𝑼 𝑛
𝑗 )

2

≤
∑

𝑖∈ℎ

𝑚𝑖𝜂
𝑁
𝑖 + 2

∑

𝑛∈𝑇

𝜏𝑛 ∫Ω
div𝕗𝑛ℎ ⋅𝐷𝑢𝜂

𝑛
ℎ + 2

∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑖𝑗(𝑼 𝑛

𝑖 − 𝑼 𝑛
𝑗 )(𝐷𝑢𝜂

𝑛
𝑖 −𝐷𝑢𝜂

𝑛
𝑗 )

≤
∑

𝑖∈ℎ

𝑚𝑖𝜂
0
𝑖 +

∑

𝑛∈𝑇

‖𝒖𝑛+1ℎ − 𝒖𝑛ℎ‖
2
𝑙2ℎ
. (29)

We first estimate ∫Ω div𝕗𝑛ℎ𝐷𝑢𝜂𝑛ℎ. The entropy relation 𝐷𝑢𝜂𝐷𝑢𝕗 = 𝐷𝑢𝒒 plays an important role. We add and remove
some terms to get

div𝕗𝑛ℎ ⋅𝐷𝑢𝜂
𝑛
ℎ = div(𝕗 (𝒖𝑛ℎ) − 𝕗𝑛ℎ) ⋅ (𝐷𝑢𝜂

𝑛
ℎ −𝐷𝑢𝜂(𝒖𝑛ℎ))

+ div(𝕗 (𝒖𝑛ℎ) − 𝕗𝑛ℎ) ⋅𝐷𝑢𝜂(𝒖𝑛ℎ) + div𝕗 (𝒖𝑛ℎ) ⋅ (𝐷𝑢𝜂
𝑛
ℎ −𝐷𝑢𝜂(𝒖𝑛ℎ))

+ div𝕗 (𝒖𝑛ℎ) ⋅𝐷𝑢𝜂(𝒖𝑛ℎ)

Noticing that 𝒖𝑛ℎ|𝜕Ω = 0 and using the Stokes formula, we get

∫Ω
div𝕗 (𝒖𝑛ℎ) ⋅𝐷𝑢𝜂(𝒖𝑛ℎ) = ∫Ω

div𝒒(𝒖𝑛ℎ) = ∫𝜕Ω
𝒒(𝒖𝑛ℎ)𝑛Ω = ∫𝜕Ω

𝒒(0)𝑛Ω = ∫Ω
div𝒒(0) = 0.

Moreover, integrating by parts and using the approximation properties of Lagrange interpolation, we infer that
|

|

|∫Ω
div(𝕗 (𝒖𝑛ℎ) − 𝕗𝑛ℎ) ⋅ (𝐷𝑢𝜂

𝑛
ℎ −𝐷𝑢𝜂(𝒖𝑛ℎ))

|

|

|

+ |

|

|∫Ω
div(𝕗 (𝒖𝑛ℎ) − 𝕗𝑛ℎ) ⋅𝐷𝑢𝜂(𝒖𝑛ℎ)

|

|

|

+ |

|

|∫Ω
div𝕗 (𝒖𝑛ℎ) ⋅ (𝐷𝑢𝜂

𝑛
ℎ −𝐷𝑢𝜂(𝒖𝑛ℎ))

|

|

|

≤ 𝐶ℎ‖∇𝒖𝑛ℎ‖
2
𝐿2(Ω).
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Thus, we have
2

∑

𝑛∈𝑇

𝜏𝑛
|

|

|∫Ω
div𝕗𝑛ℎ ⋅𝐷𝑢𝜂

𝑛
ℎ
|

|

|

≤ 𝐶
∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖
2
𝐿2(Ω). (30)

For the last term on the right-hand side of (29), we use (27) to infer that
∑

𝑛∈𝑇

‖𝒖𝑛+1ℎ − 𝒖𝑛ℎ‖
2
𝑙2ℎ
≤ (1 + 𝛿20)𝜌

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝒖

𝑛
ℎ, 𝒖

𝑛
ℎ). (31)

After obtaining the estimates (30) and (31), we put them into (29) and infer that
(

2𝛼 − 𝜌(1 + 𝛿20)
)

∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝑼

𝑛
𝑖 − 𝑼 𝑛

𝑗 )
2 ≤

∑

𝑖∈ℎ

𝑚𝑖𝜂
0
𝑖 −

∑

𝑖∈ℎ

𝑚𝑖𝜂
𝑁
𝑖 + 𝐶

∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖
2
𝐿2(Ω).

We conclude using Assumption 4.3.

Assumption 4.4. (Upper bound of maximum wave speed) We assume that 𝜆𝑚𝑎𝑥(𝑼 𝑛
𝑖 ,𝑼

𝑛
𝑗 ,𝒏𝑖𝑗) is uniformly bounded

from above by a constant for all 𝑖, 𝑗 ∈ ℎ and for all 𝑛 ∈ 𝑇 .
Assumption 4.5. (Convergence in 𝐿1) We assume that the sequence of numerical solutions {𝒖ℎ,𝜏}ℎ has a subsequence
(still denoted by {𝒖ℎ,𝜏}ℎ) which converges strongly to a function 𝒖 ∈ 𝐿∞(Ω × (0, 𝑇 );ℝ𝑚) in 𝐿1, i.e., that ‖𝒖ℎ,𝜏 −

𝒖‖𝐿1(Ω×(0,𝑇 );ℝ𝑚)
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0.

Theorem 4.1. (Convergence of the scheme) Assume that the CFL condition (23) holds with 𝜌 < 2𝛼
1+𝛿0

, and that Assump-
tions 4.1, 4.2, 4.3, 4.4 and 4.5 hold true. Then, the limit of the sequence of numerical solutions (up to a subsequence)
is a weak solution of (5), i.e., for all 𝝋 ∈ ∞

𝑐 (Ω × [0, 𝑇 );ℝ𝑚), we have

∫

𝑇

0 ∫Ω
𝒖𝜕𝑡𝝋 + ∫

𝑇

0 ∫Ω
𝕗 (𝒖) ∶ ∇𝝋 + ∫Ω

𝒖0𝝋(𝑥, 0) = 0.

Proof. The proof is the same as in Section 3, the only difference is that, in Section 3, we have 𝑑𝑛𝑖𝑗 ≤ 𝐶ℎ𝑑−1, but for
hyperbolic systems, we do not know an a priori upper bound of maximum wave speed, so we need Assumptions 4.4 to
ensure that 𝑑𝑛𝑖𝑗 ≤ 𝐶‖𝒄𝑖𝑗‖2 ≤ 𝐶ℎ𝑑−1.

5 Further analysis
Since the analysis for conservation laws is similar to the analysis for hyperbolic systems, we focus in this section on
hyperbolic systems.

5.1 Entropy inequality
In this subsection, we prove that the sequence of numerical solutions (up to a subsequence) converges to an entropy
solution, i.e., the entropy inequality (7) is satisfied by the limit. The argument for proving this result is similar to the
proof of Theorem 3.1.

We use the scheme (22) for this subsection.
Theorem 5.1. (Entropy inequality) Assume the CFL condition (23) holds with 𝜌 < 2𝛼

1+𝛿20
, and Assumptions 4.1, 4.2,

4.3, 4.4 and 4.5 hold. Then, the limit of our numerical solution (up to a subsequence) is the entropy solution of (5),
i.e., for all 𝜑 ∈ ∞

𝑐 (Ω × [0, 𝑇 );ℝ+), we have

−∫

𝑇

0 ∫Ω
𝜂(𝒖)𝜕𝑡𝝋 − ∫

𝑇

0 ∫Ω
𝒒(𝒖) ⋅ ∇𝝋 − ∫Ω

𝜂(𝒖0)𝝋(𝑥, 0) ≤ 0.
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Proof. We follow the same arguments as in the proof of Theorem 3.1, with slight modifications. We multiply the
discrete entropy inequality (25) by 𝜑𝑛

𝑖 ≥ 0 and sum over all 𝑖 ∈ ℎ and all 𝑛 ∈ 𝑇 to get
𝐸1,ℎ + 𝐸2,ℎ + 𝐸3,ℎ ≤ 0, (32)

where
𝐸1,ℎ ∶=

∑

𝑛∈𝑇

∑

𝑖∈ℎ

𝑚𝑖(𝜂𝑛+1𝑖 − 𝜂𝑛𝑖 )𝜑
𝑛
𝑖 ,

𝐸2,ℎ ∶=
∑

𝑛∈𝑇

𝜏𝑛 ∫Ω
divℎ(𝒒(𝒖𝑛ℎ))𝜑

𝑛
ℎ,

𝐸3,ℎ ∶=
∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑛𝑖𝑗(𝜂

𝑛
𝑖 − 𝜂𝑛𝑗 )(𝜑

𝑛
𝑖 − 𝜑𝑛

𝑗 ).

Similarly, we introduce two terms:

𝐸̃1,ℎ ∶= −∫

𝑇

0 ∫Ω
𝜂(𝒖𝑛ℎ)𝜕𝑡𝜑 − ∫Ω

𝜂(𝒖0)𝜑(𝑥, 0),

𝐸̃2,ℎ ∶= −∫

𝑇

0 ∫Ω
𝒒(𝒖𝑛ℎ) ⋅ ∇𝜑.

We will prove that 𝐸1,ℎ − 𝐸̃1,ℎ
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0, 𝐸2,ℎ − 𝐸̃2,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0 and 𝐸3,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0. Then, passing to the limit in (32)

gives limℎ→0 𝐸̃1,ℎ + 𝐸̃2,ℎ ≤ 0. After that, we decompose the left-hand side of (7) into two parts:

𝐸1,0 ∶= −∫

𝑇

0 ∫Ω
𝜂(𝒖)𝜕𝑡𝜑 − ∫Ω

𝜂(𝒖0)𝜑(𝑥, 0),

𝐸2,0 ∶= −∫

𝑇

0 ∫Ω
𝒒(𝒖) ⋅ ∇𝜑.

Then, using Assumption 4.5, we conclude by proving 𝐸̃1,ℎ
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 𝐸1,0 and 𝐸̃2,ℎ

ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 𝐸2,0.

We start with 𝐸1,ℎ − 𝐸̃1,ℎ. The strategy is slightly different from Theorem 3.1. We add and remove the Lagrange
interpolant 𝜂𝑛ℎ of 𝜂(𝒖𝑛ℎ) in 𝐸̃1,ℎ and estimate the errors. In details, adding and removing 𝜂𝑛ℎ in 𝐸̃1,ℎ gives

𝐸̃1,ℎ = −∫

𝑇

0 ∫Ω

(

𝜂(𝒖𝑛ℎ) − 𝜂𝑛ℎ
)

𝜕𝑡𝜑 − ∫

𝑇

0 ∫Ω
𝜂𝑛ℎ𝜕𝑡𝜑 − ∫Ω

𝜂(𝒖0)𝜑(𝑥, 0) ∶= 𝐸̃𝑒𝑟𝑟𝑜𝑟
1,ℎ + 𝐸̃𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒

1,ℎ ,

with obvious notation. The first term 𝐸̃𝑒𝑟𝑟𝑜𝑟
1,ℎ converges to zero since

|

|

|∫

𝑇

0 ∫Ω

(

𝜂(𝒖𝑛ℎ) − 𝜂𝑛ℎ
)

𝜕𝑡𝜑
|

|

|

≤ 𝐶
∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖𝐿2(Ω) ≤ 𝐶ℎ1∕2
(

∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖
2
𝐿2(Ω)

)1∕2( ∑

𝑛∈𝑇

𝜏𝑛
)1∕2

≤ 𝐶ℎ1∕2.

We integrate by parts in time for 𝐸̃𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒
1,ℎ and infer that

𝐸̃𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒
1,ℎ =

∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝜂𝑛+1𝑖 − 𝜂𝑛𝑖 )∫𝜔𝑖

𝜙𝑖𝜑
𝑛 + ∫Ω

(

𝜂(𝒖0ℎ) − 𝜂(𝒖0)
)

𝜑0.

So,
𝐸1,ℎ − 𝐸̃𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒

1,ℎ =
∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝜂𝑛+1𝑖 − 𝜂𝑛𝑖 )∫𝜔𝑖

𝜙𝑖(𝜑𝑛
𝑖 − 𝜑𝑛) − ∫Ω

(

𝜂(𝒖0ℎ) − 𝜂(𝒖0)
)

𝜑0.

The approximation properties of 𝐿2-projection ensure the second term tends to zero:
|

|

|∫Ω

(

𝜂(𝒖0ℎ) − 𝜂(𝒖0)
)

𝜑0|
|

|

≤ 𝐶‖𝜂(𝒖0ℎ) − 𝜂(𝒖0)‖𝐿2(Ω) ≤ 𝐶‖𝒖0ℎ − 𝒖0‖𝐿2(Ω)
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0,
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where the limit result is from a classical density argument. For the first term, using the Lipschitz continuity of 𝜂 and
following the same reasoning as in the proof of Theorem 3.1 gives

|

|

|

∑

𝑛∈𝑇

∑

𝑖∈ℎ

(𝜂𝑛+1𝑖 − 𝜂𝑛𝑖 )∫𝜔𝑖

𝜙𝑖(𝜑𝑛
𝑖 − 𝜑𝑛)||

|

≤ 𝐶
∑

𝑛∈𝑇

∑

𝑖∈ℎ

|𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖 |∫𝜔𝑖

|𝜙𝑖(𝜑𝑛
𝑖 − 𝜑𝑛)| ≤ 𝐶ℎ1∕2.

To estimate 𝐸2,ℎ − 𝐸̃2,ℎ, the idea is to use Assumption 4.3. More precisely, we have

𝐸2,ℎ − 𝐸̃2,ℎ =
∑

𝑛∈𝑇
∫𝐼𝑛 ∫Ω

𝒒(𝒖𝑛ℎ) ⋅ ∇𝜑
𝑛 − ℎ(𝒒(𝒖𝑛ℎ)) ⋅ ∇𝜑

𝑛
ℎ

=
∑

𝑛∈𝑇
∫𝐼𝑛 ∫Ω

(

𝒒(𝒖𝑛ℎ) − ℎ(𝒒(𝒖𝑛ℎ))
)

⋅ ∇𝜑𝑛 + ℎ(𝒒(𝒖𝑛ℎ)) ⋅ ∇(𝜑
𝑛 − 𝜑𝑛

ℎ).

Noticing that ‖𝒒(𝒖𝑛ℎ) − ℎ(𝒒(𝒖𝑛ℎ))‖𝐿2(Ω) ≤ 𝐶ℎ‖∇𝒖𝑛ℎ‖𝐿2(Ω), the same reasoning as in the proof of Theorem 3.1 gives
|𝐸2,ℎ − 𝐸̃2,ℎ| ≤ 𝐶ℎ1∕2.

For the viscosities dissipation term 𝐸3,ℎ, noticing that (𝜂𝑛𝑖 − 𝜂𝑛𝑗 )
2 ≤ 𝐶(𝑼 𝑛

𝑖 −𝑼 𝑛
𝑗 )

2, the Cauchy-Schwarz inequality
gives:

|𝐸3,ℎ| ≤ 𝐶|

|

|

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝜂

𝑛
ℎ, 𝜑

𝑛
ℎ)
|

|

|

≤ 𝐶
∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ)

1∕2𝑏𝑛ℎ(𝜑
𝑛
ℎ, 𝜑

𝑛
ℎ)

1∕2

≤ 𝐶
(

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝑢

𝑛
ℎ, 𝑢

𝑛
ℎ)𝑏

𝑛
ℎ(𝜑

𝑛
ℎ, 𝜑

𝑛
ℎ)
)1∕2( ∑

𝑛∈𝑇

𝜏𝑛
)1∕2

≤ 𝐶ℎ1∕2,

since 𝑏𝑛ℎ(𝜑𝑛
ℎ, 𝜑

𝑛
ℎ) ≤ 𝐶ℎ as discussed in the proof of Theorem 3.1. Collecting all the estimates gives limℎ→0 𝐸̃1,ℎ+𝐸̃2,ℎ ≤

0.
Since {𝒖𝑛ℎ}ℎ converges to 𝒖 in 𝐿1 owing to Assumption 4.5, we have,

|

|

|∫

𝑇

0 ∫Ω

(

𝜂(𝒖𝑛ℎ) − 𝜂(𝒖)
)

𝜕𝑡𝜑
|

|

|

≤ 𝐶‖𝒖𝑛ℎ − 𝒖‖𝐿1(Ω×(0,𝑇 ))
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0,

|

|

|∫

𝑇

0 ∫Ω
(𝒒(𝒖𝑛ℎ) − 𝒒(𝒖)) ⋅ ∇𝜑||

|

≤ 𝐶‖𝒒(𝒖𝑛ℎ) − 𝒒(𝒖)‖𝐿1(Ω×(0,𝑇 )) ≤ 𝐶‖𝒖𝑛ℎ − 𝒖‖𝐿1(Ω×(0,𝑇 ))
ℎ→0
←←←←←←←←←←←←←←←←←←←←←←→ 0.

Then, invoking limℎ→0 𝐸̃1,ℎ + 𝐸̃2,ℎ ≤ 0, we complete the proof.

5.2 Analysis without sonic points
In this subsection, we want to remove the assumptions on ∑

𝑛∈𝑇
𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖

2
𝐿2(Ω)

, and the assumption on the Riemann
average, i.e., Assumptions 4.3 and 4.2. This can be realized by assuming that there are no sonic points, i.e., assuming
that the upper bound on the maximum wave speed is uniformly bounded from below.
Definition 5.1. (scheme) We use the notation from the previous section. The scheme should be modified slightly as
follows:

𝑚𝑖
𝑼 𝑛+1

𝑖 − 𝑼 𝑛
𝑖

𝜏𝑛
+

∑

𝑗∈(𝑖)∖{𝑖}

(

𝕗 (𝑈𝑛
𝑗 )𝒄𝑖𝑗 + 𝜅𝑑𝑛𝑖𝑗(𝑼

𝑛
𝑖 − 𝑼 𝑛

𝑗 )
)

= 0, (33)

with 𝜅 a sufficiently large constant precised in Lemma 5.6. Moreover, the following CFL condition should hold:
𝜏𝑛 ≤ 𝜌 min

𝑖∈0
ℎ

𝑚𝑖
2𝜅𝑑𝑛𝑖𝑖

, (34)

with a given constant 𝜌 ∈ (0, 1].
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Lemma 5.1. (Convex combination) We can rewrite the scheme as follows:

𝑼 𝑛+1
𝑖 =

∑

𝑗∈(𝑖)
Θ𝑛
𝑖𝑗𝑼̄

𝑛
𝑖𝑗 , (35)

where Θ𝑛
𝑖𝑗 ∶=

2𝜏𝑛𝜅𝑑𝑛𝑖𝑗
𝑚𝑖

for all 𝑗 ∈ (𝑖)∖{𝑖} and Θ𝑛
𝑖𝑖 ∶= 1 −

∑

𝑗∈(𝑖)∖{𝑖} Θ
𝑛
𝑖𝑗 . By the same argument as in the previous

section, all the coefficients are in [0, 1], and the Riemann average 𝑼̄ 𝑛
𝑖𝑗 ∶=

1
2 (𝑼

𝑛
𝑖 + 𝑼 𝑛

𝑗 ) −
(

𝕗 (𝑼 𝑛
𝑗 ) − 𝕗 (𝑼 𝑛

𝑖 )
) 𝒄𝑖𝑗
2𝜅𝑑𝑛𝑖𝑗

takes

values in the invariant set .

Assumption 5.1. (Boundedness of maximum wave speed) We assume that 𝜆𝑚𝑎𝑥(𝑼 𝑛
𝑖 ,𝑼

𝑛
𝑗 ,𝒏𝑖𝑗) is uniformly bounded

from below and above for all 𝑖, 𝑗 ∈ ℎ and all 𝑛 ∈ 𝑇 , i.e., there exists a constant 𝐶𝜆 such that
𝐶−1
𝜆 𝐿(𝕗 ) ≤ 𝜆𝑚𝑎𝑥(𝑼 𝑛

𝑖 ,𝑼
𝑛
𝑗 ,𝒏𝑖𝑗) ≤ 𝐶𝜆𝐿(𝕗 ), (36)

where 𝐿(𝕗 ) is the Lipschitz constant of 𝕗 .
Lemma 5.2. (Boundedness of Riemann average) Under Assumption 5.1, the Riemann average stays in a ball with
center

𝑼𝑛
𝑖 +𝑼

𝑛
𝑗

2 and radius 𝐶𝜆
2𝜅 ‖𝑼

𝑛
𝑖 − 𝑼 𝑛

𝑗‖2 for all 𝑖, 𝑗 ∈ ℎ and all 𝑛 ∈ 𝑇 .

Proof. Owing to Assumption 5.1, we have 𝑑𝑛𝑖𝑗 ≥ 𝐶−1
𝜆 𝐿(𝕗 )‖𝒄𝑖𝑗‖2. Hence,

‖

‖

‖

(

𝕗 (𝑼 𝑛
𝑗 ) − 𝕗 (𝑼 𝑛

𝑖 )
)

𝒄𝑖𝑗
2𝜅𝑑𝑛𝑖𝑗

‖

‖

‖2
≤ ‖𝕗 (𝑼 𝑛

𝑗 ) − 𝕗 (𝑼 𝑛
𝑖 )‖2

‖𝒄𝑖𝑗‖2
2𝜅𝐶−1

𝜆 𝐿(𝕗 )‖𝒄𝑖𝑗‖2
≤

𝐶𝜆
2𝜅

‖𝑼 𝑛
𝑖 − 𝑼 𝑛

𝑗‖2.

Lemma 5.3. (estimate on temporal accumulation) Under the CFL condition (34) and Assumption 5.1, we have the
following estimate for all 𝑛 ∈ 𝑇 :

‖𝒖𝑛+1ℎ − 𝒖𝑛ℎ‖
2
𝑙2ℎ
≤ (𝜅 +

𝐶2
𝜆
𝜅

)𝜌𝜏𝑛𝑏𝑛ℎ(𝒖
𝑛
ℎ, 𝒖

𝑛
ℎ). (37)

Proof. The proof is the same as the proof in Section 4, the only differences are that we replace 𝛿0 in (27) by 𝐶𝜆
𝜅 and

that the definition of the CFL condition is changed.
Lemma 5.4. (Norm equivalence) Under Assumption 5.1, there exists a constant 𝐶1 > 0 such that

(𝐶1)−1𝐿(𝕗 )𝑏𝑛ℎ(𝒗ℎ, 𝒗ℎ) ≤ ℎ‖∇𝒗ℎ‖2𝐿2(Ω) ≤ 𝐶1𝐿(𝕗 )𝑏𝑛ℎ(𝒗ℎ, 𝒗ℎ), (38)

for all 𝒗ℎ ∈
(

𝑉 0
ℎ
)𝑚.

Proof. The proof follows the idea of [14]. We take two functions 𝒗ℎ =
∑

𝑖∈ℎ
𝑽 𝑖𝜙𝑖,𝒘ℎ =

∑

𝑖∈ℎ
𝑾 𝑖𝜙𝑖 ∈

(

𝑉 0
ℎ
)𝑚,

and define the local bilinear form on each cell 𝐾:
𝑏𝐾 (𝒗ℎ,𝒘ℎ) =

1
2

∑

𝑖,𝑗∈(𝐾)
𝑑𝑛𝑖𝑗(𝑽 𝑖 − 𝑽 𝑗)𝑇 (𝑾 𝑖 −𝑾 𝑗).

Up to the change of variable 𝒗̂ℎ|𝐾̂ = 𝒗ℎ|𝐾◦Φ𝐾 , the definition of 𝑏𝐾 , Assumption 5.1 and ‖𝒄𝑖𝑗‖2 = 𝑂(ℎ𝑑−1) imply that
( ℎ
𝑚(𝐾)𝑏𝐾 (⋅, ⋅)

)
1
2 is a norm on 𝑃∕ℝ. Since all norms are equivalent on 𝑃∕ℝ, we infer that

𝐶𝐿(𝕗 )‖∇𝒗̂ℎ‖2𝐿2(𝐾̂)
≤ ℎ

𝑚(𝐾)
𝑏𝐾 (𝒗ℎ, 𝒗ℎ) ≤ 𝐶𝐿(𝕗 )‖∇𝒗̂ℎ‖2𝐿2(𝐾̂)

.

After using the change of variable 𝒗ℎ = 𝒗̂ℎ◦Φ−1
𝐾 and 𝐶ℎ𝑑 ≤ 𝑚𝑖 ≤ 𝐶ℎ𝑑 for all 𝑖 ∈ ℎ, we infer that

𝐶𝐿(𝕗 )ℎ‖∇𝒗ℎ‖2𝐿2(𝐾) ≤ 𝑏𝐾 (𝒗ℎ, 𝒗ℎ) ≤ 𝐶𝐿(𝕗 )ℎ‖∇𝒗ℎ‖2𝐿2(𝐾).
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Since the pairs (𝑖, 𝑗) ∈ ℎ ×ℎ are counted twice, when we sum over all cells, we get

𝑏𝑛ℎ(𝒗ℎ, 𝒗ℎ) =
1
2
∑

𝐾
𝑏𝐾 (𝒗ℎ, 𝒗ℎ).

This concludes the proof.
Lemma 5.5. (BV-like estimate) Under Assumption 5.1, we have ℎ‖∇𝒖𝑛ℎ‖

2
𝐿2(Ω)

≤ 𝐶1𝐿(𝕗 )𝑏𝑛ℎ(𝒖
𝑛
ℎ, 𝒖

𝑛
ℎ).

Proof. This is the direct corollary of the previous lemma.
Lemma 5.6. (Bound on dissipation) Under the CFL condition (34) with 𝜌 < 2𝛼 and Assumptions 4.1 and 5.1, we have

the following stability property by choosing 𝜅 sufficiently large so that (2𝛼 − 𝜌)𝜅 −
𝜌𝐶2

𝜆
𝜅 − 𝐶0 > 0 and 𝜅 ≥ 1.

∑

𝑖∈ℎ

𝑚𝑖𝜂
𝑁
𝑖 +

(

(2𝛼 − 𝜌)𝜅 −
𝜌𝐶2

𝜆
𝜅

− 𝐶0

)

∑

𝑛∈𝑇

𝜏𝑛𝑏
𝑛
ℎ(𝒖

𝑛
ℎ, 𝒖

𝑛
ℎ) ≤

∑

𝑖∈ℎ

𝑚𝑖𝜂
0
𝑖 , (39)

where 𝐶0 is a constant depending on the approximation properties of 𝑃1 Lagrange finite element, 𝐿(𝕗 ), 𝐶1 and the final
time 𝑇 .

Proof. The argument is the same as in Section 22 with the following modifications:
(i) Replacing 2𝛼

∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑖𝑗(𝑼 𝑛

𝑖 − 𝑼 𝑛
𝑗 )

2 by 2𝜅𝛼
∑

𝑛∈𝑇

𝜏𝑛
∑

𝑖∈ℎ,𝑗<𝑖
𝑑𝑖𝑗(𝑼 𝑛

𝑖 − 𝑼 𝑛
𝑗 )

2 in (29).
(ii) Replacing ∑

𝑛∈𝑇

𝜏𝑛ℎ‖∇𝒖𝑛ℎ‖
2
𝐿2(Ω)

by 𝐶0
∑

𝑛∈𝑇

𝜏𝑛𝑏𝑛ℎ(𝒖
𝑛
ℎ, 𝒖

𝑛
ℎ) in (30).

(iii) Replacing 1 + 𝛿20 by 𝜅 +
𝐶2
𝜆
𝜅 in (31).

Then, a similar reasoning proves the present lemma.
After obtaining the above bound on dissipation, we can get the convergence result as in the previous section.

6 Numerical experiments
In this section, we numerically illustrate the first-order invariant-domain-preserving method on conservation laws and
hyperbolic systems. Since the scheme defined in the previous sections only considers zero boundary conditions, we
introduce here a scheme that accounts for nonzero the boundary conditions. We denote Γ𝑖𝑛 ⊂ 𝜕Ω a part of the boundary
where the boundary condition is enforced at the PDE level. For conservation laws, it is typically the problem-dependent
inflow part, i.e., Γ𝑖𝑛 ∶= {𝑥 ∈ 𝜕Ω ∶ 𝒇 (𝑢(𝑥, 𝑡)) ⋅ 𝒏 < 0}. The set Γ𝑖𝑛

ℎ is defined as the set of degrees of freedom lying
on Γ𝑖𝑛, and 𝑜

ℎ ∶= ℎ∖
Γ𝑖𝑛
ℎ . Then we compute 𝑈𝑛+1

𝑖 by

𝑚𝑖
𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖
𝜏𝑛

+
∑

𝑗∈(𝑖)∖{𝑖}

(

𝒇 (𝑈𝑛
𝑗 )𝒄𝑖𝑗 + 𝑑𝑛𝑖𝑗(𝑈

𝑛
𝑖 − 𝑈𝑛

𝑗 )
)

= 0,

for all 𝑖 ∈ 𝑜
ℎ and all 𝑛 ∈ 𝑇 . The boundary condition is strongly enforced on 𝑈𝑛+1

𝑖 . For hyperbolic systems, the
boundary condition may be enforced only on some components of 𝑼 𝑛+1

𝑖 . The 𝐿1- and 𝐿2-relative errors are estimated
at the final time 𝑇 for all the examples. In all the tests, the upper bound on the maximum wave speed is set to a constant
value for all pairs (𝑈𝑛

𝑖 , 𝑈
𝑛
𝑗 ) ∈  ×  for simplicity. Provided this upper bound is large enough, the invariant-domain-

preserving property is satisfied.
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6.1 Details about code
I implemented a Python program to realize the scheme by following Zhaonan Dong’s idea. The whole code is roughly
divided into five parts: mesh reading and treatment, numerical integration, matrix computation, schema implementa-
tion, and error estimate.

The data format follows the idea of Zhaonan Dong. The program can read a file in .mat format, and it can convert
the mesh information to Python’s data of type ’Ndarray’, and store it in a class named ’Geometry’. In addition to
reading data from .mat files, this class also provides functions for calculating useful geometric information in various
schemes.

For numerical integration, I wrote the bases of finite elements of the Lagrange type of order 1, 2 and 3 on a reference
element. The realization of numerical integration uses the tensor product of the point of Gauss and the point of Legendre
on the rectangular unit, then apply a linear transformation between the rectangle and the triangle for computing the
integration on the triangle element. For various differential operators, I have calculated the exact first and second
order differentials of each base. In addition to the Lagrange bases, the first to third order Bernstein bases were also
implemented by a linear transformation from Lagrange basis to Bernstein basis.

In the matrix calculation part, the matrices are calculated in parallel. This includes the stiffness matrix of the Poisson
problem, the mass matrix and the matrices 𝒄𝑖𝑗 and 𝑑𝑛𝑖𝑗 used in the implementation of the scheme. In the calculation of
𝑑𝑛𝑖𝑗 , in order to simplify the problem, I only consider the case where the upper bound of the maximum wave speed is a
constant. In all calculations, the numerical integral on each mesh is parallel, but the final assembling process is not in
parallel.

The implementation part of the scheme mainly contains the following parts: implementation of the initial condition,
calculation of the CFL condition, time evolution and boundary conditions. The calculation of the initial condition
uses the 𝐿2-projection, i.e., an approximation of the initial condition is obtained by inverting a mass matrix. The CFL
condition calculation is computed by using the information from inflow part. There are two ways to update coefficients:
one is by matrix-vector multiplication (scalar case) and matrix-matrix multiplication (system case), the advantage of
this method is that the ’scipy’ module optimizes these algebraic operators. Another method is to use the algebraic
expressions given by the scheme and the locality of stencil. As the update of each degree of freedom is only related
to its stencil, we only use the local information for the coefficient updates. The advantage of this method is that its
parallel implementation is much simpler than matrix multiplication. The imposition of boundary conditions depends
on the problem. In the scalar case, I implemented three different methods: imposing in the strong sense, in the weak
sense, and by solving the Riemann problem. The first method consists in imposing the boundary conditions directly
on the degree of freedom on the inflow part by using the nodal value (if the boundary data is sufficiently smooth). The
second method is achieved by adding a surface integral (on inflow part) on the left and right side of the scheme. The
last method is to determine the coefficients by solving a Riemann problem in which the left state is the updated value
calculated by the scheme, and the right state is the nodal value of the boundary data. In the numerical experiments,
their results are very similar, so in the report I only present the experiments by strongly imposing boundary condition.
In the system case, I only implemented the first method, because the boundary conditions of hyperbolic systems are
more complicated and depend on the problem.

The error estimate is realized by the numerical integration of an order higher than the polynomial order of the finite
elements, I implemented the estimate for 𝐿1, 𝐿2 and 𝐻1.

6.2 Convergence tests with smooth solutions
We illustrate the method by solving model problems with smooth solutions in 1D and 2D.

6.2.1 Linear transport in 1D

We consider the model problem
𝑢𝑡 + 𝑢𝑥 = 0,

in the domain Ω ∶= (−1, 1), with the initial condition 𝑢0(𝑥) = 𝑢𝑒𝑥(𝑥, 0), the inflow boundary condition 𝑢(−1, 𝑡) = 𝑡+1,
and the exact solution 𝑢𝑒𝑥(𝑥, 𝑡) ∶= 𝑡 − 𝑥. The upper bound on the maximum wave speed is set to 𝜆𝑚𝑎𝑥 ∶= 1. The final
time is 𝑇 ∶= 1.

We show in Table 1 the relative errors in the 𝐿1- and the 𝐿2-norms. We observe from the table a super-convergence
phenomenon, although the time discretization is only first-order accurate.
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Table 1: Linear transport, 1D

𝐿1 𝐿2

DoFs error rate error rate
21 2.50E-03 - 9.12E-03 -
41 6.25E-04 2.00 3.23E-03 1.50
81 1.56E-04 2.00 1.14E-03 1.50
161 3.91E-05 2.00 4.03E-04 1.50
321 9.77E-06 2.00 1.43E-04 1.50

Table 2: Linear transport, 2D

𝐿1 𝐿2

DoFs error rate error rate
21 3.73E-01 - 9.12E-01 -
41 2.10E-01 0.98 3.23E-01 0.90
81 1.14E-01 0.96 1.14E-01 0.90
161 6.00E-02 0.97 4.03E-02 0.93
321 3.08E-02 0.98 1.43E-02 0.96

6.2.2 Linear transport in 2D

We consider the model problem
𝑢𝑡 + div(𝜷𝑢) = 0,

in the domain Ω ∶= (−1, 1)2, with 𝜷 ∶= (2,−1)𝑇 the fixed transport velocity. The initial condition is 𝑢0(𝑥) = 𝑢𝑒𝑥(𝑥, 0),the inflow boundary condition 𝑢(𝑥, 𝑡) = 𝑢𝑒𝑥(𝑥, 𝑡) are imposed at the inflow part Γ𝑖𝑛 = {(𝑥1, 𝑥2) ∈ Ω ∶ 𝑥1 = −1 or 𝑥2 =
1}, the exact solution is 𝑢𝑒𝑥(𝑥, 𝑡) ∶= exp (𝑥1 + 𝑥2 − 𝑡). In the numerical experiment, the upper bound on the maximum
wave speed is set to 𝜆𝑚𝑎𝑥 ∶= 1.5. The final time is 𝑇 ∶= 0.75.

We show in Table 2 the relative errors in the 𝐿1-norm and 𝐿2-norm.

6.2.3 Wave equation in 1D

We consider the model problem
{

𝑢𝑡 + 𝑣𝑥 = 0,
𝑣𝑡 + 𝑢𝑥 = 0,

in the domain Ω ∶= (−1, 1), with the initial condition (

𝑢0(𝑥), 𝑣0(𝑥)
)

=
(

𝑢𝑒𝑥(𝑥, 0), 𝑣𝑒𝑥(𝑥, 0)
), and the boundary condi-

tion 𝑢(𝑥, 𝑡) = 𝑢𝑒𝑥(𝑥, 𝑡) is enforced at the whole boundary. The exact solution is defined as 𝑢𝑒𝑥(𝑥, 𝑡) ∶= sin(𝑥) sin(𝑡), 𝑣𝑒𝑥(𝑥, 𝑡) ∶=
cos(𝑥) cos(𝑡). The upper bound on the maximum wave speed is set to 𝜆𝑚𝑎𝑥 ∶= 1. The final time is 𝑇 ∶= 1.

We show in Table 3 the relative errors in the 𝐿1-norm and 𝐿2-norm for (𝑢, 𝑣), i.e., we estimate errors defined by
‖

(

𝑢𝑁ℎ , 𝑣𝑁ℎ
)

−
(

𝑢𝑒𝑥(⋅, 𝑇 ), 𝑣𝑒𝑥(⋅, 𝑇 )
)

‖𝐿𝑝(Ω) for 𝑝 = 1, 2.

6.2.4 Wave equation in 2D with small and large graph viscosity

We consider the model problem
{

𝑢𝑡 − div𝒗 = 0,
𝒗𝑡 − 𝑐2∇𝑢 = 0,

25



Table 3: Wave equation, 1D

𝐿1 𝐿2

DoFs error rate error rate
21×2 3.14E-01 - 1.39E-01 -
41×2 1.36E-01 1.21 6.12E-02 1.18
81×2 6.60E-02 1.04 3.00E-02 1.03
161×2 3.16E-02 1.06 1.44E-02 1.06
321×2 1.57E-02 1.01 7.15E-03 1.01

Table 4: Wave equation, 2D

small viscosity 𝐿1 𝐿2

DoFs error rate error rate
25×3 1.74E-00 - 1.70E-00 -
81×3 1.24E-00 0.58 1.21E-00 0.57
289×3 8.09E-01 0.65 7.98E-01 0.67
1089×3 4.83E-01 0.74 4.88E-01 0.78
4225×3 2.69E-01 0.80 2.85E-01 0.86
16641×3 1.44E-01 0.82 1.61E-02 0.91

large viscosity 𝐿1 𝐿2

DoFs error rate error rate
25×3 2.87E-00 - 2.89E-00 -
81×3 2.55E-00 0.20 2.56E-00 0.21
289×3 2.08E-00 0.32 2.06E-00 0.34
1089×3 1.53E-00 0.47 1.50E-00 0.48
4225×3 9.95E-01 0.63 9.75E-01 0.63
16641×3 5.91E-01 0.76 5.87E-02 0.74

in the domain Ω ∶= (−1, 1)2, 𝑐 ∶= 1
√

2𝜋
the wave speed, The initial condition is (𝑢0(𝑥), 𝒗0(𝑥)

)

=
(

𝑢𝑒𝑥(𝑥, 0), 𝒗𝑒𝑥(𝑥, 0)
),

and the boundary condition 𝑢(𝑥, 𝑡) = 𝑢𝑒𝑥(𝑥, 𝑡) is enforced at the whole boundary, and the exact solution is

𝑢𝑒𝑥(𝑥, 𝑡) = sin(𝜋𝑥1) sin(𝜋𝑥2) sin(𝑡), 𝒗𝑒𝑥(𝑥, 𝑡) =
(

−1
2𝜋 cos(𝜋𝑥1) sin(𝜋𝑥2) cos(𝑡),

−1
2𝜋 sin(𝜋𝑥1) cos(𝜋𝑥2) cos(𝑡)

)

.

The upper bound on the maximum wave speed is set to 𝜆𝑚𝑎𝑥 ∶= 𝑐 (small viscosity) in the first experiment and 𝜆𝑚𝑎𝑥 ∶= 1
(large viscosity) in the second experiment. The final time is 𝑇 ∶= 1.

We show in Table 4 the relative errors in the 𝐿1-norm and 𝐿2-norm for (𝑢, 𝒗). As observed from the Table, if we
add too much viscosity, the scheme still converges but the rate may be influenced.

6.2.5 Euler equations in 2D

We consider the following equations:
⎧

⎪

⎨

⎪

⎩

𝜌𝑡 + div𝒎 = 0,
𝒎𝑡 + div(𝒗⊗𝒎) + ∇𝑝 = 0,
𝐸𝑡 + div(𝒗(𝐸 + 𝑝)) = 0,

in the domain Ω ∶= (−1, 1)2, with the initial data (

𝜌0(𝑥),𝒎0(𝑥), 𝐸0(𝑥)
)

=
(

𝜌𝑒𝑥(𝑥, 0),𝒎𝑒𝑥(𝑥, 0), 𝐸𝑒𝑥(𝑥, 0)
), and the

boundary data (

𝜌(𝑥, 𝑡),𝒎(𝑥, 𝑡), 𝐸(𝑥, 𝑡)
)

=
(

𝜌𝑒𝑥(𝑥, 𝑡),𝒎𝑒𝑥(𝑥, 𝑡), 𝐸𝑒𝑥(𝑥, 𝑡)
) enforced at the whole boundary, where the

exact solution (𝜌𝑒𝑥,𝒎𝑒𝑥, 𝐸𝑒𝑥) is a two-dimensional isentropic vortex from Section 5.6 in [13] with 𝑥01 = 𝑥02 = 0. More
precisely, the exact solution is constructed as follows: Let 𝜌∞ ∶= 𝑇∞ ∶= 1, 𝒖∞ ∶= (𝑢∞, 𝑣∞), 𝑢∞ ∶= 𝑣∞ ∶= 1, be the
free-stream values; then the exact solution is a passive convection of a vortex with mean velocity 𝒖∞:

𝜌𝑒𝑥(𝑥, 𝑡) = (𝑇∞ + 𝛿𝑇 )1∕(𝛾−1), 𝒖𝑒𝑥(𝑥, 𝑡) = 𝒖∞ + 𝛿𝒖, 𝑝(𝑥, 𝑡) = 𝜌𝛾𝑒𝑥,

𝛿𝒖(𝑥, 𝑡) = 𝛽
2𝜋

exp(1 − 𝑟2

2
)(−𝑥̄2, 𝑥̄1)𝑇 , 𝛿𝑇 (𝑥, 𝑡) = −

(𝛾 − 1)𝛽2

8𝛾𝜋2
exp(1 − 𝑟2),
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Table 5: Euler equations, 2D

𝜌 𝐿1 𝐿2

DoFs error rate error rate
25×4 1.46E-02 - 2.23E-01 -
81×4 1.81E-02 -0.36 3.02E-02 -0.51
289×4 1.76E-02 0.05 2.99E-02 0.01
1089×4 1.52E-02 0.22 2.51E-02 0.27
4225×4 1.26E-02 0.27 1.96E-02 0.35

𝐸 𝐿1 𝐿2

DoFs error rate error rate
25×4 4.57E-01 - 3.34E-01 -
81×4 3.46E-01 0.47 2.27E-01 0.66
289×4 2.66E-01 0.41 1.67E-01 0.48
1089×4 1.89E-01 0.51 1.14E-01 0.57
4225×4 1.29E-01 0.56 7.55E-02 0.61

Table 6: Shock for Burgers’ equation

𝐿1 𝐿2

DoFs error rate error rate
21 9.37E-02 - 1.91E-01 -
41 4.70E-02 0.99 1.36E-01 0.50
81 2.30E-02 1.03 9.34E-02 0.54
161 1.15E-02 1.00 6.60E-02 0.50
321 5.88E-03 0.97 4.79E-02 0.46

with 𝑥̄ ∶= (𝑥1 − 𝑢∞𝑡, 𝑥2 − 𝑣∞𝑡), 𝑟2 ∶= ‖𝑥̄‖22, 𝛾 ∶= 7∕5, and 𝛽 ∶= 5. Moreover,

𝒎𝑒𝑥 = 𝜌𝑒𝑥𝒖𝑒𝑥, 𝐸𝑒𝑥 = 1
2

(𝒎2
𝑒𝑥

𝜌𝑒𝑥
+

𝑝
𝛾 − 1

)

.

The upper bound on the maximum wave speed is set to 𝜆𝑚𝑎𝑥 ∶= 5 and the final time is 𝑇 ∶= 0.5.
We show in Table 5 the relative errors in the 𝐿1-norm and 𝐿2-norm for 𝜌 and 𝐸.

6.3 Convergence tests with non-smooth solutions
In this section, we present simulations for non-smooth solutions, including a shock for Burgers’ equation in 1D, a
curved shock for Burgers’ equation in 2D, and a curved shock for a nonconvex flux in 2D.

6.3.1 Shock for Burgers’ equation in 1D

In this example, we consider Burgers’ equation

𝑢𝑡 +
(1
2
𝑢2
)

𝑥
= 0,

with the initial data 𝑢 ∶= 1 if 𝑥 < 0 and 𝑢 ∶= 0 if 𝑥 > 0. In other words, we want to solve a Riemann problem for
Burgers’ equation. The exact solution is 𝑢𝑒𝑥 = 1 if 𝑥 < 0.5𝑡 and 𝑢 = 0 otherwise. We estimate the errors at time
𝑇 ∶= 1. In Table 6, we observe that the rate of convergence is ℎ1∕𝑝, as predicted in [14]. The upper bound on the
maximum wave speed is set to 1. We present solutions on a sequence of uniform meshes at the final time 𝑇 = 1 in
Figure 3 to illustrate how the mesh refinement improves the shock resolution.

6.3.2 Curved shock for Burgers’ equation in 2D

We still consider Burgers’ equation, but in 2D. This example is from [16]. We consider the model problem
𝑢𝑡 + div𝒇 (𝑢) = 0,
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(a) shock with 21 DoFs (b) shock with 81 DoFs

(c) shock with 321 DoFs
Figure 3: Shocks of Burgers’ equation

28



Table 7: Burgers’ equation, 2D

𝐿1 𝐿2

DoFs error rate error rate
25 6.40E-01 - 8.96E-01 -
81 4.86E-01 0.47 6.90E-01 0.44
289 3.44E-01 0.55 5.03E-01 0.49
1089 2.28E-01 0.62 3.53E-01 0.53
4225 1.43E-01 0.68 2.57E-01 0.47
16641 8.65E-02 0.74 1.88E-01 0.45

(a) exact solution (b) numerical solution
Figure 4: Solutions to Burgers’ equation

in the domain Ω ∶= (−0.25, 1.75)2, with 𝒇 (𝑢) ∶= 1
2 (𝑢

2, 𝑢2)𝑇 , and the initial condition 𝑢0(𝑥) = 𝑢𝑒𝑥(𝑥, 0). The boundary
condition is imposed on the inflow part. The final time is 𝑇 ∶= 0.75. The exact solution is constructed as follows. We
take 𝑎 = 0.75. We assume firstly 𝑥2 ≤ 𝑥1. Then, we set 𝑧1 = 𝑥1 −

1
2 , 𝑧2 = 𝑥2 −

1
2 and 𝛼 = 𝑧1 − 𝑧2. There are three

cases depending on the value of 𝛼:

if 𝛼 ≤ 1 −
𝑡(1 + 𝑎)

2
, 𝑢𝑒𝑥(𝑥, 𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

𝑧2
𝑡 if − 𝑎𝑡 ≤ 𝑧2 < 𝑡,
1, if 𝑡 ≤ 𝑧2 < 1 − 𝑎 + (1 − 𝑎) 𝑡2 ,
−𝑎, otherwise;

if 1 − 𝑡(1 + 𝑎)
2

< 𝛼 ≤ 1, 𝑢𝑒𝑥(𝑥, 𝑡) ∶=

{ 𝑧2
𝑡 , if − 𝑎𝑡 ≤ 𝑧2 <

√

2(1 + 𝑎)𝑡(1 − 𝑎) − 𝑎𝑡,
−𝑎, otherwise;

if 1 < 𝛼, then 𝑢𝑒𝑥(𝑥, 𝑡) ∶= −𝑎. Finally, we set 𝑢𝑒𝑥((𝑥1, 𝑥2), 𝑡) ∶= 𝑢𝑒𝑥((𝑥2, 𝑥1), 𝑡) if 𝑥1 ≤ 𝑥2. The final time is 𝑇 = 0.75
and the upper bound on the maximum wave speed is set to be 1. The rate of convergence is reported in Table 7.

Moreover, in Figure 4, we present the 𝑃1-interpolant of the exact solution and our numerical simulation with 8192
cells. We observe that the shape of the exact solution is well reproduced by the numerical solution.

6.3.3 KPP flux in 2D

This example is also from [16]. We consider here a nonconvex flux 𝒇 (𝑢) ∶=
(

sin(𝑢), cos(𝑢)
)𝑇 . This is a challenging

test, because of the loss of the convexity of the flux. The final time is 𝑇 ∶= 1, the domain is Ω ∶= (−2, 2)×(−2.5, 1.5),
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Figure 5: Numerical simulation with KPP flux

and the initial data is
𝑢0(𝑥) ∶=

{

14𝜋
4 , if ‖𝑥‖22 ≤ 1,

𝜋
4 , otherwise.

The boundary condition is imposed on the inflow part where 𝒇 (𝑢) ⋅ 𝒏 < 0. We observe from Figure 5 and comparing
to the results reported in [16] that the correct shape of the solution is captured.

7 Further work
7.1 In practice

• We will rewrite the mesh reading part by using a well-developed mesh package in Python instead of reading the
Matlab file.

• High order basis will be implemented.
• A general method for transforming Lagrange basis to Bernstein basis will be considered.
• We will find a way for imposing the boundary condition for Bernstein basis.
• Higher order scheme will be implemented.
• The scheme will be rewritten in parallel.

7.2 In theory
• We will try to remove the assumption of BV-like bound 3.1 and 4.3 without modifying the scheme.
• The general boundary condition will be considered.
• A more general assumption on entropy pairs will be investigated.
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