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Hyperbolic conservation laws with source

o Ou+ V- f(u) = R(u)
Hyperbolic conservation
laws with source term

° (?ttu —Au = f
Linear acoustic wave
equations
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Shocks, interfaces



Neutron transport equation

o QVU40ll =2 [, Utq
Neutron transport equations

(3(93) + 2(9))d
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Highly-contrasted coefficients



Phase transition models

o du— Au+e2(ud—u) =0
Allen—Cahn equation
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Sharp interfaces



Common challenges

e Physically meaningful numerical solution:
bound-preserving, energy-decay, entropy-decay, ...

o Well-captured shocks and singularities:

correct wave speed, as small as possible oscillation, ...



Outline

. Conservation laws with stiff reaction:
[Ern, Guermond, Wang, 24, J. Sci. Comput.]

2. Neutron transport equation:
[Guermond, Wang, 25, J. Comput. Phys.]

3. Allen—Cahn equation:
[Dong, Ern, Wang, accepted, Comput. Math. Appl.]

4. Linear acoustic wave equation:
[Dong, Mascotto, Wang, submitted, Numer. Math.]
[Dong, Georgoulis, Mascotto, Wang, submitted, Numer. Math.]



Conservation laws

with stiff reaction
[Ern, Guermond, Wang, 24,

J. Sci. Comput.]



PDE model

with ug and suitable BC, ¢ > 0

[Examples for f]
e Linear:
flv)=v
e Burgers:
o) = 2

f(v) = (sinw, cosv)

out + V- f(u®) = %R(ug) in D x (0,7

xample for R

otk [— Ry () RN
@ stable states {0,1} /
@ unstable state {0.5}| /

Ryr(v) =v(l —v)(v — %)

[Example [LeVeque, Yee, 90]

Oyu® + Oyuf = %RYL(US)



PDE properties

We focus on R(v) = v(1 —v)(1 — ), a € (0,1), for simplicity

e Invariant-domain-preserving (IDP):
up(x) € [0,1] = u®(x,t) € [0,1]

e Entropy-inequality:

In(u®) +V - q(uf) <
7 is convex, q(v) :=

=1 (u) R(ue),
(S)f’( )ds



Limit «° := lim._,o u®

e There exists a unique u° (at least in 1D) [Fan, Jin, Teng, 00]

15 . . - .
o u® = u¥ exponentially fast: reaction on characteristic line

e u is piecewise constant, what are the shock speeds?

convex fluz, R(v) = v(1 — v)(v— «)

f(1) — £(0)

flo) B

0.00
0.0 0.2

e In general, u® may not satisfy Rankin—-Hugoniot relation

o Approximating u is challenging
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Expected numerical properties

In the regime ¢ < h:

o Capture shocks with correct wave speed
o IDP: u§ (x,t) € [0,1]
o Asymptotic-preserving (AP): uj ~ u(,)Z

e Entropy inequality:
Oen(uj,) +V - q(uf) — 2n(uf)' R(uj) < A(h) =0
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Short literature review

Classical schemes are not AP.

= Jw =

" | gl iex o z<—05
)1 z>-05

e=10"% h=3.9x10"1

R(v) =v(1 —v)(v—10.9)

uo(x)

L -

e Some partially successful results:
> [Bao, Jin, 02]: AP for 1D, convex flux, shock-type 1C
> [Svérd, Mishra, 11]: AP for 1D, convex flux;
no interaction between rarefaction and shock

Our contribution

IDP-AP scheme for arbitrary d, f and ug
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Our scheme I: IDP

ne transport n+le  reaction n+le
U > wy, —

n+1,57un,5 n
e Transport (whfh + V- fuy®) =0):
Stabilized FEM, upwind, Lax-Friedrichs, Godunov, ...
e.g., [Eymard, Gallouet, Herbin, 00], [Guermond, Nazarov, 14]

e Reaction (u2+1,e = (1), dv = %R(U), v(0) = wz+1,e):
> Original ODE is expensive to solve
> Fast IDP update: dyv = %U(l _ ,U)(w'}nl,—&-l,e —a)
nile _ _ wpt™hexp((r/e)(wy " —a))
=u =
h 1+wZ+1’e(exp(('r/s)(w',frl’afoz))fl)

o u(z) € [0,1] = w; o (x) € [0,1] = u} T (x) € [0,1]
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Our scheme Il: AP

R(v), ®.j :=max(e, h?)

Theorem (Entropy inequalities)
Assume that n € C?, ¢ < h? and ¢ € W,™, we have
1 g\/ 5
n(up) R(uy), ) <
(I)a h

’

C (W2 lug oy + ROV U5 o

Question: optimal 6 to minimize error?
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Choosing 0

R(v) =v(1 —v)(v—0.7)
f(’U) — sin(227r7r'u), €= 1073

o R()/h’, 6 €{0.3,...,1}
dashed line: R(-)/e

colored vertical lines: h? = ¢

minimizing error = lower envelope =

0~a+blogh)™ = & :=max(e,vh’), O~a, y=e

15 -



Choosing 0

e (0,7) depends on model parameters

e Still possible to consider all-purpose parameters

(0,) = (0.1,0.05) linear flux
= (0.4,0.1) nonlinear flux
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Numerical tests in 1D

o flv) =0 R(y) = p(1 —v)(v—0.5), e = 1073

(0,7): optimal values x, all-purpose values o; dashed line ®. ) = e.

e Similar result for other f and R
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Numerical tests in 1D

o f(v)=3v% R(v) =v(l —v)(v—109), =103
e Interaction between shock and rarefaction

I l—h=6.3e-03| [ ] "l |—h=6.3e-03| [ ]
—h=1.6e-03 —h=16e-03 |
ol |—h=3.9e-04| ool |—h=3.9e-04| | |
...... ue —— ‘1‘
| | |
w )
(a) [Svard, Mishra, 11] (b) our scheme

e Shocks incorrectly approximated in (a);
correctly approximated in (b)
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Conclusion & Perspectives

e An IDP-AP scheme is proposed, based on operator-splitting
and cut-off techniques

e Optimal cut-off parameters are numerically investigated

e High-order schemes are a future research direction
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Neutron transport

equation
[Guermond, Wang, 25,
J. Comput. Phys.]



PDE model

Find ¥ : D x §2 —» R* sit.

O.S
Q- VU +0'0=— [ T4y
47 S2
with non-negative inflow BC,
total and scattering cross sections o' > ¢° > 0 (can vary on D)
e Key properties:
> Positivity-preserving: ¥(x,Q) >0
> |o*| = oo = diffusion limit ¥°
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Short literature review

e Sy for angular discretization
e Main challenge: find a method with
» positivity-preserving » AP » high-order
» oscillation-free » conservative » fast post-processing

W >0 | AP | high-order | no osc. | conserv. fast
post-proc.
dG(0)

+ modif. / / X / / )
dG(p) X v v X v -
dG(p)

+ optim. v v / / / X

cG X v v X v -
CrhAv) oy, X v x -
+ rescaling

References: [Chandrasekhar, 50], [Larsen, Morel, Miller, 87],

[Gosse, Toscani, 02], [Guermond, Kanschat, 10],

[Buet, Després, Frank, 12], [Guermond, Popov, Ragusa, 20],
zz[Yee, Olivier, Haut, Holec, Tomov, Maginot, 20]



Our main contribution

Novel limiting process

» positivity-preserving » AP » high-order
» oscillation-free » conservative » fast (linear complexity)

A two-step post-process:
1. Local limiting: temper oscillation

> loop on all dofs:
> apply local limiter based on mass redistribution

2. Global limiting: impose global a priori bounds
> apply global limiter based on cut-off technique
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Prototype: linear transport equation

Q-Vzu+ou=q in D C R?
with suitable BC, fixed Q € R?, d =1,2,3, 0,4 > 0

Solution method:
e stabilized high-order numerical method (e.g., edge
stabilization/CIP [Burman, Hansbo, 04]) = {u;}icy;
e local limiting to temper small oscillation (repeat a few times):
> estimate local bounds = {(u® ™)}y

K2 ’ 2

> apply local limiter = {@;}iey
e Global limiting to guarantee positivity = {u; };cy
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Local bound

Based on method of characteristics [Lathrop, 69];
o = const for simplicity

{Q~Vmu+au:q

X
| —g ([ 2 s
e u(z) = urer ™ o 4 [ Lot qs
__ ,,up
ulgp- =u

xupP

e Upwinding node i“P defined using local dof stencil Z(7)

e Maximizing/minimizing ¢ = local bound

25 —



Local limiting

Main steps (repeat a few times):
e loop on all dofs 7 € V:
1. compute {uimax qmin
2. apply local limiter on each dof i € V
* u; > up®™ = decrease u;, increase {u;}jez()
* u; <up'" = increase u;, decrease {u;};jez(;)

e Locally mass conservative
e Converging in a few number of iterations on all dofs
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Global limiter

Main steps:

e set lower/upper bound to u™in, y™max;

e cut-off = {ﬂi}iev;
o small modification on dofs based on 3_, .\, mju; = {u; }iey.
Uy

- +
I us (US , Ug )umax

wnur) ot
E
U

Lemma (properties of global limiter)
+ _
Doy MUY = D ey Mill;

. +
e u; e U *U;

min S u;i— S umax,

27 -



Numerical test: linear transport

e O=1,D=(0,1), u(0) =0, ¢ = 0O(1)
highly-contrasted o between 1 and 103
e Simulation with h ~ 2 x 1072, P,

0.35 0.30 P
oaaf PaGE ol PECE it it
0.20
0.15
0.10
0.05
08 1 0.00 0 0.2 0.4 06 0.8
(a) Galerkin 4+ CIP (b) Galerkin + CIP + limiting
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o (1= (170)' D= (Oa 1)21 q= 0(1)
highly-contrasted o between 1 and 103

Numerical test: linear transport

P Po P3
I L'Err rate I L'-Err rate I L'-Err rate
961 5.08E-02 — 1681 2.32E-02 — 961 4.12E-02 -
3721 2.34E-02 1.15 6561 1.04E-02 1.18 3721 1.96E-02 1.10
14641 9.62E-03 1.30 25921 3.74E-03 1.49 14641 7.08E-03 1.49
58081 3.18E-03 1.61 103041 1.09E-03 1.79 58081 1.71E-03 2.06
231361 8.28E-04 1.95 410881 4.64E-04 1.23 231361 4.18E-04 2.04

29 -



Extension to neutron transport equation

S
Q-Vm‘l/+at\11:0—/ v +q
47 S2

Main steps:
1. Discretization:
> angular: discrete ordinate/Sy:
quadrature {Qy, ux }kex on unit sphere
> space: Galerkin 4+ CIP (numerically AP)
> numerical solution: {Uy p}rex, dofs {Uk ;}rer,icv
2. Source iteration (on n):
> 'Vw‘I'Z,JZl + t‘I’ZTzl 47er ¥, +q:=q"
> local bounds estimator = {(\I/gf‘;*x,\llgf;“)}m using ¢"
local limiting = {\I'"+1 ki

> global limiting with (¥™in Ymax) — (0, +00) = {\1/”+I +}k,z’
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Neutron transport, AP

o ol =0° =¢71, g = 2en?sin(nz) sin(my) /3, zero BC,
Y0 = lim. 0 ¥ = sin(7z) sin(7y)
e Py, h > ¢, U}, as average of Wy, over k

e convergence ||, —¢°|| in L?- and H'-norms

€ h L?-error | rate | H'-error | rate

le-1 1.23e-2 - 1.95e-2 -

5e-2 3.14e-3 | 2.12 | 5.75e-3 | 1.90

le-6 | 2.5e-2 | 7.84e-4 | 2.08 | 1.98e-3 | 1.60

1.25e-2 | 1.92e-4 | 2.06 | 7.06e-4 | 1.51

6.25e-3 | 4.59e-5 | 2.08 | 2.35e-4 | 1.60
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Neutron transport, reflection

1 if n(x) - Q2 <0and Q=0

0 otherwise

o U(x, Q)= {

o h~2.6x 1073 maxgep o® ~ 102, Sg (few angulars)

_— ol =100, 0f=99,g =0

(a) geometry & parameters (b) Py, Uy,
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Conclusion & perspectives

e A fast, mass conservative and bound-preserving
post-processing is proposed and numerically tested.

e Possible improvement: recall source iteration

O.S
Q- vmq);f,;l + atﬂb;jj,gl - EZ m¥r, +q
[

small oscillation near discontinuity
RHS/inflow dof are not always positive
local bound is not always positive/accurate
need more reliable local bound

V V V V
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Allen—Cahn equation
[Dong, Ern, Wang, accepted,
Comput. Math. Appl.]
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PDE model

8tu—Au+El2f(u):0 in D x (0,T)

with ug € HY(D), Onulop =0, € > 0.
o F(v):=%(?—1)2 f(v):=F'(v) =v(v? — 1)
with stable states 1
o Energy decay js( ) == 5IVol? + & [ F(
st ) + (IO < o)
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Interface of solution

e A narrow transition region of O(e) thickness exists
where u crosses zero.

) A

um—1

Figure: [Fig 6.4, Bartels, 15]
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Expected numerical properties

e Bound-preserving: up(x,t) € [—1,1]

o Energy decay: sup;c; Je(un(t)) < J=(ul)

e Polynomial e-dependence in error estimates
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Short literature review

e Bound-preserving:
[Li, Yang, Zhou, 20], [Du, Ju, Li, Qiao, 21],
[Shen, Zhang, 22], [Liu, Riviere, Shen, Zhang, 24].

e Polynomial e-dependence:
[Feng, Prohl, 03], [Bartels, 15],
[Chrysafinos, 19], [Akrivis, Li, 22].

Our contribution

Combine the two properties.
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Our scheme

Let V}, be the FEM space, VhJr C Vj, the subset of v,j s.t.:

Yoy, 1= ZViapi € Va, v;[ = Zmin(l,max(—l,Vi))ga,‘, v, = Up — v:[.
=% =%

Let « = O(1). Then for all n € NV,

n,+ n—1,+ n,+
u —Uu n n,—
( . T * + 4 5}5 ,UR) + (Vuh7+7vvh) +sn(uy ", vn) =0,
> hi™? 4 hi U™ Vi, Yun €V
sn(uy' ™, vn) == a ( + 62) f iy VU € V.

i€V

e Nonlinear space discretization for elliptic PDEs in
[Barrenechea, Georgoulis, Pryer, Veeser, 24]

e Nonlinear system solved by a few number of
Newton + Richardson-like iterations
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Well-posedness of our scheme

Lemma (Well-posedness)

Assume that o = O(1) is sufficiently large, T < %.
There exists a unique u}} € Vy, for alln € N.

Proof.
Apply theory of finite-dimensional monotone operators.
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Stability of our scheme

Recall J-(v) = %HVUH2 + 5% Jp F(v

Lemma (Local in time)

o — un 1,+
ujt = argmin (7. (vn) + 2| =—2—|1?)
vaVh+
Lemma (Global in time)
,+ g 1,+
maxjs(uh’Jr +C Z ” = A H < J(u)

neN
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Polynomial ¢-dependent error estimates |

We introduce the principal eigenvalue of the linearized eigenvalue
problem from [Chen, 94]:

—2 p/ 2 9
A(t) = max{o,_ e )0 + Vol }
veH1(@)\{0} DIk

which satisfies

/T A(t)dt < C +log(e™")
0

where k represents the number of topological changes
[Bartels and Miiller, 11], [Bartels, Miiller, Ortner, 11],
[Bartels, 15]
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Polynomial e-dependent error estimates |1

e Split error into consistent, stability parts

e Control consistent part by a bound-preserving Ritz-projection
[this thesis]

e Control stability part by linearized eigenvalue problem &
generalized Gronwall inequality [Bartels, 15]

43 -



Polynomial e-dependent error estimates Il

Theorem (Error estimate)

Suppose that u € H(J; H*(Q)) N H2(J; L*(Q)).
Let « be sufficiently large, 7,h < C<P, with some 3 > 0.

maXHu —upT|| < C—— (T + h)
neN

cdr+2 (

{2 v =)} < Ogr+h)

neN
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Numerical test with topological changes

e Test from [Feng, Wu, 2005]
e c2=25e—4, 71=3e—3,t1 = 1.7e — 2, ty ~ 2.5¢ — 2

(a) operator-splitting, t1 (b) operator-splitting, t2

) our scheme, t; (d) our scheme, to

Ug
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Conclusion & perspectives

e Bound-preserving scheme

e Error bounds with polynomial e-dependence

e Future research directions:

> high-order schemes
> mesh adaptivity
> application on semi-implicit schemes
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Linear acoustic wave

equation

[Dong, Mascotto, Wang,
submitted, Numer. Math ]
[Dong, Georgoulis, Mascotto,
Wang, submitted, Numer. Math.]



Wave equation: hp-error analysis

Opu — Au = f in D x (0,7
u(-,0) € HY(D)  dyu(-,0) € L*(D)

e hp-a priori and a posteriori analysis
for second-order formulation are scarce

e final goal

e Qur contribution
> hp-a priori analysis for fully discretized scheme
> hp-a posteriori analysis for time semi-discretized scheme
> hp-space-time a posteriori analysis for fully discretized scheme
(submitted recently)
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https://drive.google.com/file/d/16xmSHIlrOoUsxGxIzIVzOF6OotK2TFiq/view?usp=drive_linkg

That’s all

Thank you for your attention
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