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Hyperbolic conservation laws with source

• ∂tu+∇ · f(u) = R(u)
Hyperbolic conservation
laws with source term

• ∂ttu−∆u = f
Linear acoustic wave
equations

photo from StockSnap, pixabay

Shocks, interfaces
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Neutron transport equation

• Ω·∇xΨ+σtΨ = σs

4π

∫
S2 Ψ+q

Neutron transport equations(
3(x) + 2(Ω)

)
d

photo from kpr2, pixabay

Highly-contrasted coefficients
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Phase transition models

• ∂tu−∆u+ ε−2(u3 − u) = 0
Allen–Cahn equation

photo from simon, pixabay

Sharp interfaces
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Common challenges

• Physically meaningful numerical solution:
bound-preserving, energy-decay, entropy-decay, ...

• Well-captured shocks and singularities:
correct wave speed, as small as possible oscillation, ...
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Outline

1. Conservation laws with stiff reaction:
[Ern, Guermond, Wang, 24, J. Sci. Comput.]

2. Neutron transport equation:
[Guermond, Wang, 25, J. Comput. Phys.]

3. Allen–Cahn equation:
[Dong, Ern, Wang, accepted, Comput. Math. Appl.]

4. Linear acoustic wave equation:
[Dong, Mascotto, Wang, submitted, Numer. Math.]
[Dong, Georgoulis, Mascotto, Wang, submitted, Numer. Math.]
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Conservation laws
with stiff reaction
[Ern, Guermond, Wang, 24,
J. Sci. Comput.]
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PDE model

∂tu
ε +∇ · f(uε) = 1

ε
R(uε) in D × (0, T ]

with u0 and suitable BC, ε > 0

Examples for f
• Linear:
f(v) = v

• Burgers:
f(v) = 1

2v
2

• KPP:
f(v) = (sin v, cos v)

Example for R

RY L(v) = v(1− v)(v − 1
2)

Example [LeVeque, Yee, 90]
∂tu

ε + ∂xu
ε = 1

εRY L(u
ε)
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PDE properties

We focus on R(v) = v(1− v)(1− α), α ∈ (0, 1), for simplicity

• Invariant-domain-preserving (IDP):
u0(x) ∈ [0, 1] =⇒ uε(x, t) ∈ [0, 1]

• Entropy-inequality:
∂tη(u

ε) +∇ · q(uε) ≤ 1
εη

′(uε)R(uε),
η is convex, q(v) :=

∫ v
0 η

′(s)f ′(s)ds
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Limit u0 := limε→0 u
ε

• There exists a unique u0 (at least in 1D) [Fan, Jin, Teng, 00]
• uε

ε→ u0 exponentially fast: reaction on characteristic line
• u0 is piecewise constant, what are the shock speeds?

f ′(α) ̸= f(1)− f(0)

1− 0

• In general, u0 may not satisfy Rankin–Hugoniot relation
• Approximating u0 is challenging
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Expected numerical properties

In the regime ε≪ h:

• Capture shocks with correct wave speed

• IDP: uεh(x, t) ∈ [0, 1]

• Asymptotic-preserving (AP): uεh ≈ u0h

• Entropy inequality:
∂tη(u

ε
h) +∇ · q(uεh)−

1
εη(u

ε
h)

′R(uεh) ≤ Λ(h) → 0
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Short literature review

• Classical schemes are not AP.
f(v) = v

u0(x) =

{
0 x < −0.5

1 x ≥ −0.5

ε = 10−3, h = 3.9× 10−4

R(v) = v(1− v)(v − 0.9)

• Some partially successful results:
> [Bao, Jin, 02]: AP for 1D, convex flux, shock-type IC
> [Svärd, Mishra, 11]: AP for 1D, convex flux;

no interaction between rarefaction and shock

Our contribution

IDP-AP scheme for arbitrary d, f and u0
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Our scheme I: IDP

un,εh

transport−−−−−−−−−→ wn+1,ε
h

reaction−−−−−−−−−→ un+1,ε
h

• Transport (w
n+1,ε
h −un,ε

h
τ +∇ · f(un,εh ) = 0):

Stabilized FEM, upwind, Lax-Friedrichs, Godunov, ...
e.g., [Eymard, Gallouet, Herbin, 00], [Guermond, Nazarov, 14]

• Reaction (un+1,ε
h = v(τ), dtv = 1

εR(v), v(0) = wn+1,ε
h ):

> Original ODE is expensive to solve
> Fast IDP update: dtv = 1

εv(1− v)(wn+1,ε
h − α)

⇒ un+1,ε
h =

wn+1,ε
h exp((τ/ε)(wn+1,ε

h −α))

1+wn+1,ε
h

(
exp((τ/ε)(wn+1,ε

h −α))−1
)

• un,εh (x) ∈ [0, 1] ⇒ wn+1,ε
h (x) ∈ [0, 1] ⇒ un+1,ε

h (x) ∈ [0, 1]
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Our scheme II: AP

1

ε
R(v) → 1

Φε,h
R(v), Φε,h := max(ε, hθ)

Theorem (Entropy inequalities)

Assume that η ∈ C2, ε≪ hθ and ψ ∈W 1,∞
0 , we have

⟨∂tη(uεh) +∇ · q(uεh)−
1

Φε,h
η(uεh)

′R(uεh), ψ⟩ ≤

C
(
h1−2θ∥uεh∥L1(L1) + h1−θ∥∇uεh∥L1(L1)

)

Question: optimal θ to minimize error?
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Choosing θ

R(v) = v(1− v)(v − 0.7)

f(v) = sin(2πv)
2π

, ε = 10−3

•: R(·)/hθ, θ ∈ {0.3, ..., 1}
dashed line: R(·)/ε
colored vertical lines: hθ = ε

minimizing error ⇒ lower envelope ⇒

θ ≈ a+ b(log h)−1 ⇒ Φε,h := max(ε, γhθ), θ ≈ a, γ ≈ eb
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Choosing θ

• (θ, γ) depends on model parameters

• Still possible to consider all-purpose parameters

(θ, γ) :=

{
(0.1, 0.05) linear flux
(0.4, 0.1) nonlinear flux
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Numerical tests in 1D

• f(v) = sin(2πv)
2π , R(v) = v(1− v)(v − 0.5), ε = 10−3

(θ, γ): optimal values ⋆, all-purpose values •; dashed line Φε,h = ε.

• Similar result for other f and R
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Numerical tests in 1D

• f(v) = 1
2v

2, R(v) = v(1− v)(v − 0.9), ε = 10−3

• Interaction between shock and rarefaction

(a) [Svärd, Mishra, 11] (b) our scheme

• Shocks incorrectly approximated in (a);
correctly approximated in (b)
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Conclusion & Perspectives

• An IDP-AP scheme is proposed, based on operator-splitting
and cut-off techniques

• Optimal cut-off parameters are numerically investigated

• High-order schemes are a future research direction
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Neutron transport
equation
[Guermond, Wang, 25,
J. Comput. Phys.]
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PDE model

Find Ψ : D × S2 → R+ s.t.

Ω · ∇xΨ+ σtΨ =
σs

4π

∫
S2

Ψ+ q

with non-negative inflow BC,
total and scattering cross sections σt ≥ σs ≥ 0 (can vary on D)

• Key properties:
> Positivity-preserving: Ψ(x,Ω) ≥ 0
> |σs| → ∞ ⇒ diffusion limit Ψ0
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Short literature review

• SN for angular discretization
• Main challenge: find a method with

➤ positivity-preserving ➤ AP ➤ high-order
➤ oscillation-free ➤ conservative ➤ fast post-processing

Ψ ≥ 0 AP high-order no osc. conserv. fast
post-proc.

dG(0)
+ modif. ✓ ✓ ✗ ✓ ✓ -

dG(p) ✗ ✓ ✓ ✗ ✓ -
dG(p)

+ optim. ✓ ✓ ✓ ✓ ✓ ✗

cG ✗ ✓ ✓ ✗ ✓ -
cG + h∆Ψ
+ rescaling ✓ ✓ ✗ ✓ ✗ -

References: [Chandrasekhar, 50], [Larsen, Morel, Miller, 87],
[Gosse, Toscani, 02], [Guermond, Kanschat, 10],
[Buet, Després, Frank, 12], [Guermond, Popov, Ragusa, 20],
[Yee, Olivier, Haut, Holec, Tomov, Maginot, 20]
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Our main contribution

Novel limiting process

➤ positivity-preserving ➤ AP ➤ high-order
➤ oscillation-free ➤ conservative ➤ fast (linear complexity)

A two-step post-process:
1. Local limiting: temper oscillation

> loop on all dofs:
> apply local limiter based on mass redistribution

2. Global limiting: impose global a priori bounds
> apply global limiter based on cut-off technique
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Prototype: linear transport equation

Ω · ∇xu+ σu = q in D ⊂ Rd

with suitable BC, fixed Ω ∈ Rd, d = 1, 2, 3, σ, q ≥ 0

Solution method:
• stabilized high-order numerical method (e.g., edge

stabilization/CIP [Burman, Hansbo, 04]) ⇒ {ui}i∈V ;
• local limiting to temper small oscillation (repeat a few times):

> estimate local bounds ⇒ {(umax
i , umin

i )}i∈V
> apply local limiter ⇒ {ũi}i∈V

• Global limiting to guarantee positivity ⇒ {u+i }i∈V
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Local bound

Based on method of characteristics [Lathrop, 69];
σ = const for simplicity{

Ω · ∇xu+ σu = q

u|∂D− = uup ⇔ u(x) = uupe
σ
|Ω| |x

up−x|
+

∫ x

xup

q

|Ω|
e

σ
|Ω| s ds

• Upwinding node iup defined using local dof stencil I(i)
• Maximizing/minimizing q ⇒ local bound
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Local limiting

Main steps (repeat a few times):
• loop on all dofs i ∈ V:

1. compute {umax
i , umin

i }
2. apply local limiter on each dof i ∈ V

⋆ ui > umax
i ⇒ decrease ui, increase {uj}j∈I(i)

⋆ ui < umin
i ⇒ increase ui, decrease {uj}j∈I(i)

• Locally mass conservative
• Converging in a few number of iterations on all dofs
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Global limiter

Main steps:

• set lower/upper bound to umin, umax;

• cut-off ⇒ {ūi}i∈V ;

• small modification on dofs based on
∑

i∈V miui ⇒ {u+i }i∈V .

Lemma (properties of global limiter)
umin ≤ u+i ≤ umax,

∑
i∈V miu

+
i =

∑
i∈V miui
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Numerical test: linear transport

• Ω = 1, D = (0, 1), u(0) = 0, q = O(1)
highly-contrasted σ between 1 and 103

• Simulation with h ≈ 2× 10−2, P2
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Numerical test: linear transport

• Ω = (1, 0), D = (0, 1)2, q = O(1)
highly-contrasted σ between 1 and 103
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Extension to neutron transport equation

Ω · ∇xΨ+ σtΨ =
σs

4π

∫
S2

Ψ+ q

Main steps:
1. Discretization:

> angular: discrete ordinate/SN :
quadrature {Ωk, µk}k∈K on unit sphere

> space: Galerkin + CIP (numerically AP)
> numerical solution: {Ψk,h}k∈K , dofs {Ψk,i}k∈K,i∈V

2. Source iteration (on n):
> Ωk · ∇xΨ

n+1
k,h + σtΨn+1

k,h = σs

4π

∑
l µlΨ

n
l,h + q := qn

> local bounds estimator ⇒ {(Ψmax
k,i ,Ψ

min
k,i )}k,i using qn

local limiting ⇒ {Ψ̃n+1
k,i }k,i

> global limiting with (Ψmin,Ψmax) = (0,+∞) ⇒ {Ψn+1,+
k,i }k,i
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Neutron transport, AP

• σt = σs = ε−1, q = 2επ2 sin(πx) sin(πy)/3, zero BC,
ψ0 = limε→0Ψ = sin(πx) sin(πy)

• P1, h≫ ε, Ψ̄h as average of Ψk,h over k
• convergence ∥Ψ̄h − ψ0∥ in L2- and H1-norms

ε h L2-error rate H1-error rate

1e-6

1e-1 1.23e-2 - 1.95e-2 -
5e-2 3.14e-3 2.12 5.75e-3 1.90

2.5e-2 7.84e-4 2.08 1.98e-3 1.60
1.25e-2 1.92e-4 2.06 7.06e-4 1.51
6.25e-3 4.59e-5 2.08 2.35e-4 1.60
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Neutron transport, reflection

• Ψ(x,Ω) =

{
1 if n(x) · Ω < 0 and Ω = Ω1

0 otherwise
• h ≈ 2.6× 10−3, maxx∈D σ

s ≈ 102, S6 (few angulars)

(a) geometry & parameters (b) P1, Ψ̄h
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Conclusion & perspectives

• A fast, mass conservative and bound-preserving
post-processing is proposed and numerically tested.

• Possible improvement: recall source iteration

Ωk · ∇xΦ
n+1
h,k + σtΦn+1

h,k =
σs

4π

∑
l

µlΨ
n
l,h + q

> small oscillation near discontinuity
> RHS/inflow dof are not always positive
> local bound is not always positive/accurate
> need more reliable local bound
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Allen–Cahn equation
[Dong, Ern, Wang, accepted,
Comput. Math. Appl.]
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PDE model

∂tu−∆u+
1

ε2
f(u) = 0 in D × (0, T )

with u0 ∈ H1(D), ∂nu|∂D = 0, ε > 0.
• F (v) := 1

4(v
2 − 1)2, f(v) := F ′(v) = v(v2 − 1)

with stable states ±1

• Energy decay: Jε(v) :=
1
2∥∇v∥

2 + 1
ε2

∫
D F (v)

supt∈J Jε(u(t)) +
∫ T
0 ∥∂tu(t)∥2dt ≤ Jε(u0)
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Interface of solution

• A narrow transition region of O(ε) thickness exists
where u crosses zero.

Figure: [Fig 6.4, Bartels, 15]

36 –



Expected numerical properties

• Bound-preserving: uh(x, t) ∈ [−1, 1]

• Energy decay: supt∈J Jε(uh(t)) ≤ Jε(u
0
h)

• Polynomial ε-dependence in error estimates
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Short literature review

• Bound-preserving:
[Li, Yang, Zhou, 20], [Du, Ju, Li, Qiao, 21],
[Shen, Zhang, 22], [Liu, Riviere, Shen, Zhang, 24].

• Polynomial ε-dependence:
[Feng, Prohl, 03], [Bartels, 15],
[Chrysafinos, 19], [Akrivis, Li, 22].

Our contribution

Combine the two properties.
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Our scheme

Let Vh be the FEM space, V +
h ⊂ Vh the subset of v+h s.t.:

∀vh :=
∑
i∈V

Viφi ∈ Vh, v+h :=
∑
i∈V

min(1,max(−1, Vi))φi, v−h := vh − v+h .

Let α = O(1). Then for all n ∈ N ,

(
un,+
h − un−1,+

h

τ
+

f(un,+
h )

ε2
, vh) + (∇un,+

h ,∇vh) + sh(u
n,−
h , vh) = 0,

sh(u
n,−
h , vh) := α

∑
i∈V

(hd
i

τ
+ hd−2

i +
hd
i

ε2

)
Un,−

i Vi, ∀vh ∈ Vh.

• Nonlinear space discretization for elliptic PDEs in
[Barrenechea, Georgoulis, Pryer, Veeser, 24]

• Nonlinear system solved by a few number of
Newton + Richardson-like iterations
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Well-posedness of our scheme

Lemma (Well-posedness)

Assume that α = O(1) is sufficiently large, τ < ε2

4 .
There exists a unique unh ∈ Vh for all n ∈ N .

Proof.
Apply theory of finite-dimensional monotone operators.
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Stability of our scheme

Recall Jε(v) =
1
2∥∇v∥

2 + 1
ε2

∫
D F (v)

Lemma (Local in time)

un,+h = argmin
vh∈V +

h

(
Jε(vh) +

τ

2
∥
vh − un−1,+

h

τ
∥2
)

Lemma (Global in time)

max
n∈N

Jε(u
n,+
h ) + C

∑
n∈N

τ
∥∥∥un,+h − un−1,+

h

τ

∥∥∥2 ≤ Jε(u
0
h)
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Polynomial ε-dependent error estimates I

We introduce the principal eigenvalue of the linearized eigenvalue
problem from [Chen, 94]:

λ(t) := max
{
0,− inf

v∈H1(Ω)\{0}

(ε−2f ′(u(t)), v2) + ∥∇v∥2

∥v∥2
}

which satisfies ∫ T

0
λ(t)dt ≤ C + log(ε−κ)

where κ represents the number of topological changes
[Bartels and Müller, 11], [Bartels, Müller, Ortner, 11],
[Bartels, 15]

42 –



Polynomial ε-dependent error estimates II

• Split error into consistent, stability parts

• Control consistent part by a bound-preserving Ritz-projection
[this thesis]

• Control stability part by linearized eigenvalue problem &
generalized Grönwall inequality [Bartels, 15]
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Polynomial ε-dependent error estimates II

Theorem (Error estimate)
Suppose that u ∈ H1(J ;H2(Ω)) ∩H2(J ;L2(Ω)).
Let α be sufficiently large, τ, h ≤ Cεβ, with some β > 0.

max
n∈N

∥un − un,+h ∥ ≤ C
1

ε4κ+2
(τ + h){ ∑

n∈N
τ∥∇(un − un,+h )∥2

} 1
2 ≤ C

1

ε4κ+3
(τ + h)

44 –



Numerical test with topological changes

• Test from [Feng, Wu, 2005]
• ε2 = 2.5e− 4, τ = 3e− 3, t1 ≈ 1.7e− 2, t2 ≈ 2.5e− 2

u0

(a) operator-splitting, t1 (b) operator-splitting, t2

(c) our scheme, t1 (d) our scheme, t2
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Conclusion & perspectives

• Bound-preserving scheme

• Error bounds with polynomial ε-dependence

• Future research directions:
> high-order schemes
> mesh adaptivity
> application on semi-implicit schemes
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Linear acoustic wave
equation
[Dong, Mascotto, Wang,
submitted, Numer. Math.]
[Dong, Georgoulis, Mascotto,
Wang, submitted, Numer. Math.]
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Wave equation: hp-error analysis

∂ttu−∆u = f in D × (0, T ]

u(·, 0) ∈ H1
0 (D) ∂tu(·, 0) ∈ L2(D)

• hp-a priori and a posteriori analysis
for second-order formulation are scarce

• final goal water wave

• Our contribution
> hp-a priori analysis for fully discretized scheme
> hp-a posteriori analysis for time semi-discretized scheme
> hp-space-time a posteriori analysis for fully discretized scheme

(submitted recently)
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That’s all

Thank you for your attention
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